Volume-preserving diffeomorphism as nonabelian higher-rank gauge symmetry
Yi-Hsien Du, Umang Mehta, Dung Xuan Nguyen, Dam Thanh Son
SciPost Phys. 12, 050 (2022) · published 2 February 2022
- doi: 10.21468/SciPostPhys.12.2.050
- Submissions/Reports
Abstract
We propose nonabelian higher-rank gauge theories in 2+1D and 3+1D. The gauge group is constructed from the volume-preserving diffeomorphisms of space. We show that the intriguing physics of the lowest Landau level (LLL) limit can be interpreted as the consequences of the symmetry. We derive the renowned Girvin-MacDonald-Platzman (GMP) algebra as well as the topological Wen-Zee term within our formalism. Using the gauge symmetry in 2+1D, we derive the LLL effective action of vortex crystal in rotating Bose gas as well as Wigner crystal of electron in an applied magnetic field. We show that the non-linear sigma models of ferromagnet in 2+1D and 3+1D exhibit the higher-rank gauge symmetries that we introduce in this paper. We interpret the fractonic behavior of the excitations on the lowest Landau level and of skyrmions in ferromagnets as the consequence of the higher-rank gauge symmetry.
Cited by 21
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Yi-Hsien Du,
- 1 Umang Mehta,
- 2 Dung Nguyen,
- 1 Dam Thanh Son