Towards a quantum fluid theory of correlated many-fermion systems from first principles
Z. A. Moldabekov, T. Dornheim, G. Gregori, F. Graziani, M. Bonitz, A. Cangi
SciPost Phys. 12, 062 (2022) · published 16 February 2022
- doi: 10.21468/SciPostPhys.12.2.062
- Submissions/Reports
Abstract
Correlated many-fermion systems emerge in a broad range of phenomena in warm dense matter, plasmonics, and ultracold atoms. Quantum hydrodynamics (QHD) complements first-principles methods for many-fermion systems at larger scales. We illustrate the failure of the standard Bohm potential central to QHD for strong perturbations when the density perturbation is larger than about $10^{-3}$ of the mean density. We then extend QHD to this regime via the \emph{many-fermion Bohm potential} from first-principles. This may lead to more accurate QHD simulations beyond their common application domain in the presence of strong perturbations at scales unattainable with first-principles methods.
Cited by 14
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Zhandos Moldabekov,
- 1 2 Tobias Dornheim,
- 3 Gianluca Gregori,
- 4 Frank Graziani,
- 5 Michael Bonitz,
- 1 2 Attila Cangi
- 1 Forschungszentrum Dresden-Rossendorf / Helmholtz-Zentrum Dresden-Rossendorf [HZDR]
- 2 Center for Advanced Systems Understanding [CASUS]
- 3 University of Oxford
- 4 Lawrence Livermore National Laboratory [LLNL]
- 5 Christian-Albrechts-Universität zu Kiel / Kiel University [CAU]
- Bundesministerium für Bildung und Forschung / Federal Ministry of Education and Research [BMBF]
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- Engineering and Physical Sciences Research Council [EPSRC]
- Sächsisches Staatsministerium für Wissenschaft und Kunst / Saxon State Ministry for Science and the Arts [SMWK]
- United States Department of Energy [DOE]