SciPost logo

Rare and Different: Anomaly Scores from a combination of likelihood and out-of-distribution models to detect new physics at the LHC

Sascha Caron, Luc Hendriks, Rob Verheyen

SciPost Phys. 12, 077 (2022) · published 25 February 2022

Abstract

We propose a new method to define anomaly scores and apply this to particle physics collider events. Anomalies can be either rare, meaning that these events are a minority in the normal dataset, or different, meaning they have values that are not inside the dataset. We quantify these two properties using an ensemble of One-Class Deep Support Vector Data Description models, which quantifies differentness, and an autoregressive flow model, which quantifies rareness. These two parameters are then combined into a single anomaly score using different combination algorithms. We train the models using a dataset containing only simulated collisions from the Standard Model of particle physics and test it using various hypothetical signals in four different channels and a secret dataset where the signals are unknown to us. The anomaly detection method described here has been evaluated in a summary paper [1] where it performed very well compared to a large number of other methods. The method is simple to implement and is applicable to other datasets in other fields as well.

Cited by 28

Crossref Cited-by

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication