SciPost logo

Integrability and quench dynamics in the spin-1 central spin XX model

Long-Hin Tang, David M. Long, Anatoli Polkovnikov, Anushya Chandran, Pieter W. Claeys

SciPost Phys. 15, 030 (2023) · published 26 July 2023


Central spin models provide an idealized description of interactions between a central degree of freedom and a mesoscopic environment of surrounding spins. We show that the family of models with a spin-1 at the center and XX interactions of arbitrary strength with surrounding spins is integrable. Specifically, we derive an extensive set of conserved quantities and obtain the exact eigenstates using the Bethe ansatz. As in the homogenous limit, the states divide into two exponentially large classes: bright states, in which the spin-1 is entangled with its surroundings, and dark states, in which it is not. On resonance, the bright states further break up into two classes depending on their weight on states with central spin polarization zero. These classes are probed in quench dynamics wherein they prevent the central spin from reaching thermal equilibrium. In the single spin-flip sector we explicitly construct the bright states and show that the central spin exhibits oscillatory dynamics as a consequence of the semilocalization of these eigenstates. We relate the integrability to the closely related class of integrable Richardson-Gaudin models, and conjecture that the spin-$s$ central spin XX model is integrable for any $s$.

Cited by 2

Crossref Cited-by

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication