SciPost logo

Search for ultralight axion dark matter in a side-band analysis of a ${}^{199}$Hg free-spin precession signal

C. Abel, N. J. Ayres, G. Ban, G. Bison, K. Bodek, V. Bondar, E. Chanel, C. B. Crawford, M. Daum, B. Dechenaux, S. Emmenegger, P. Flaux, W. C. Griffith, P. G. Harris, Y. Kermaidic, K. Kirch, S. Komposch, P. A. Koss, J. Krempel, B. Lauss, T. Lefort, Prajwal MohanMurthy, Oscar Naviliat Cuncic, D. Pais, F. M. Piegsa, Guillaume Pignol, M. Rawlik, D. Ries, Stephanie Roccia, D. Rozpedzik, Philipp Schmidt-Wellenburg, N. Severijns, Y. V. Stadnik, J. A. Thorne, A. Weis, E. Wursten, Jacek Zejma, Geza Zsigmond

SciPost Phys. 15, 058 (2023) · published 9 August 2023


Ultra-low-mass axions are a viable dark matter candidate and may form a coherently oscillating classical field. Nuclear spins in experiments on Earth might couple to this oscillating axion dark-matter field, when propagating on Earth's trajectory through our Galaxy. This spin coupling resembles an oscillating pseudo-magnetic field which modulates the spin precession of nuclear spins. Here we report on the null result of a demonstration experiment searching for a frequency modulation of the free spin-precession signal of \magHg in a 1 $\mu$T magnetic field. Our search covers the axion mass range $10^{-16}$ eV $\lesssim m_a \lesssim 10^{-13}$ eV and achieves a peak sensitivity to the axion-nucleon coupling of $g_{aNN} \approx 3.5 \times 10^{-6}$ GeV$^{-1}$.

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication