SciPost logo

Boundary states of three dimensional topological order and the deconfined quantum critical point

Wenjie Ji, Nathanan Tantivasadakarn, Cenke Xu

SciPost Phys. 15, 231 (2023) · published 7 December 2023


We study the boundary states of the archetypal three dimensional topological order, i.e. the three dimensional $\mathbb{Z}_2$ toric code. There are three distinct elementary types of boundary states that we will consider in this work. In the phase diagram that includes the three elementary boundaries there may exist a multi-critical point, which is captured by the so-called deconfined quantum critical point (DQCP) with an "easy-axis" anisotropy. Moreover, there is an emergent $\mathbb{Z}_{2,d}$ symmetry that swaps two of the boundary types, and it becomes part of the global symmetry of the DQCP. The emergent $\mathbb{Z}_{2,d}$ (where d represents "defect") symmetry on the boundary is originated from a type of surface defect in the bulk. We further find a gapped boundary with a surface topological order that is invariant under the emergent symmetry.

Cited by 1

Crossref Cited-by

Authors / Affiliations: mappings to Contributors and Organizations

See all Organizations.
Funders for the research work leading to this publication