Quantum analytic Langlands correspondence
Davide Gaiotto, Jörg Teschner
SciPost Phys. 18, 144 (2025) · published 30 April 2025
- doi: 10.21468/SciPostPhys.18.4.144
- Submissions/Reports
-
Abstract
The analytic Langlands correspondence describes the solution to the spectral problem for the quantised Hitchin Hamiltonians. It is related to the S-duality of $\mathcal{N}=4$ super Yang-Mills theory. We propose a one-parameter deformation of the Analytic Langlands Correspondence, and discuss its relations to quantum field theory. The partition functions of the $H_3^+$ WZNW model are interpreted as the wave-functions of a spherical vector in the quantisation of complex Chern-Simons theory. Verlinde line operators generate a representation of two copies of the quantised skein algebra on generalised partition functions. We conjecture that this action generates a basis for the underlying Hilbert space, and explain in which sense the resulting quantum theory represents a deformation of the Analytic Langlands Correspondence.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Davide Gaiotto,
- 2 3 Jörg Teschner
- 1 Institut Périmètre de physique théorique / Perimeter Institute [PI]
- 2 Deutsches Elektronen-Synchrotron / Deutsche Elektronen-Synchrotron DESY [DESY]
- 3 Universität Hamburg / University of Hamburg [UH]