Random matrix universality in dynamical correlation functions at late times
Oscar Bouverot-Dupuis, Silvia Pappalardi, Jorge Kurchan, Anatoli Polkovnikov, Laura Foini
SciPost Phys. 19, 050 (2025) · published 20 August 2025
- doi: 10.21468/SciPostPhys.19.2.050
- Submissions/Reports
-
Abstract
We study the behaviour of two-time correlation functions at late times for finite system sizes considering observables whose (one-point) average value does not depend on energy. In the long time limit, we show that such correlation functions display a ramp and a plateau determined by the correlations of energy levels, similar to what is already known for the spectral form factor. The plateau value is determined, in absence of degenerate energy levels, by the fluctuations of diagonal matrix elements, which highlights differences between different symmetry classes. We show this behaviour analytically by employing results from Random Matrix Theory and the Eigenstate Thermalisation Hypothesis, and numerically by exact diagonalization in the toy example of a Hamiltonian drawn from a Random Matrix ensemble and in a more realistic example of disordered spin glasses at high temperature. Importantly, correlation functions in the ramp regime do not show self-averaging behaviour, and, at difference with the spectral form factor the time average does not coincide with the ensemble average.
Cited by 1
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 3 4 5 Oscar Bouverot-Dupuis,
- 6 Silvia Pappalardi,
- 1 7 8 9 10 11 Jorge Kurchan,
- 12 Anatoli Polkovnikov,
- 2 Laura Foini
- 1 Centre National de la Recherche Scientifique / French National Centre for Scientific Research [CNRS]
- 2 L'Institut de physique théorique [IPhT]
- 3 Laboratoire de Physique Théorique et Modèles Statistiques [LPTMS]
- 4 Commissariat à l'énergie atomique / CEA Saclay [CEA Saclay]
- 5 Université Paris-Saclay / University of Paris-Saclay
- 6 Universität zu Köln / University of Cologne [UoC]
- 7 Université de recherche Paris Sciences et Lettres / PSL Research University [PSL]
- 8 Sorbonne Université / Sorbonne University
- 9 École Normale Supérieure [ENS]
- 10 Université de Paris / University of Paris
- 11 Laboratoire de Physique de l’École Normale Supérieure / Physics Laboratory of the École Normale Supérieure [LPENS]
- 12 Boston University [BU]
