An integrable Lorentz-breaking deformation of two-dimensional CFTs
Monica Guica
SciPost Phys. 5, 048 (2018) · published 12 November 2018
- doi: 10.21468/SciPostPhys.5.5.048
- Submissions/Reports
Abstract
It has been recently shown that the deformation of an arbitrary two-dimensional conformal field theory by the composite irrelevant operator $T \bar T$, built from the components of the stress tensor, is solvable; in particular, the finite-size spectrum of the deformed theory can be obtained from that of the original CFT through a universal formula. We study a similarly universal, Lorentz-breaking deformation of two-dimensional CFTs that posess a conserved $U(1)$ current, $J$. The deformation takes the schematic form $J \bar T$ and is interesting because it preserves an $SL(2,\mathbb{R}) \times U(1)$ subgroup of the original global conformal symmetries. For the case of a purely (anti)chiral current, we find the finite-size spectrum of the deformed theory and study its thermodynamic properties. We test our predictions in a simple example involving deformed free fermions.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.5.5.048
TI - An integrable Lorentz-breaking deformation of two-dimensional CFTs
PY - 2018/11/12
UR - https://www.scipost.org/SciPostPhys.5.5.048
JF - SciPost Physics
JA - SciPost Phys.
VL - 5
IS - 5
SP - 048
A1 - Guica, Monica
AB - It has been recently shown that the deformation of an arbitrary two-dimensional conformal field theory by the composite irrelevant operator $T \bar T$, built from the components of the stress tensor, is solvable; in particular, the finite-size spectrum of the deformed theory can be obtained from that of the original CFT through a universal formula. We study a similarly universal, Lorentz-breaking deformation of two-dimensional CFTs that posess a conserved $U(1)$ current, $J$. The deformation takes the schematic form $J \bar T$ and is interesting because it preserves an $SL(2,\mathbb{R}) \times U(1)$ subgroup of the original global conformal symmetries. For the case of a purely (anti)chiral current, we find the finite-size spectrum of the deformed theory and study its thermodynamic properties. We test our predictions in a simple example involving deformed free fermions.
ER -
@Article{10.21468/SciPostPhys.5.5.048,
title={{An integrable Lorentz-breaking deformation of two-dimensional CFTs}},
author={Monica Guica},
journal={SciPost Phys.},
volume={5},
pages={048},
year={2018},
publisher={SciPost},
doi={10.21468/SciPostPhys.5.5.048},
url={https://scipost.org/10.21468/SciPostPhys.5.5.048},
}
Cited by 110
-
Chattopadhyay et al., Krylov complexity of deformed conformal field theories
J. High Energ. Phys. 2024, 53 (2024) [Crossref] -
Wang et al., Fix the dual geometries of $$T\bar{T}$$ deformed CFT$$_2$$ and highly excited states of CFT$$_2$$
Eur. Phys. J. C 80, 1117 (2020) [Crossref] -
Griguolo et al., Nonperturbative effects and resurgence in Jackiw-Teitelboim gravity at finite cutoff
Phys. Rev. D 105, 046015 (2022) [Crossref] -
Bzowski et al., The holographic interpretation of $$ J\overline{T} $$-deformed CFTs
J. High Energ. Phys. 2019, 198 (2019) [Crossref] -
Cardy et al., $$ T\overline{T} $$ deformations and the width of fundamental particles
J. High Energ. Phys. 2022, 136 (2022) [Crossref] -
Conti et al., Conserved currents and T$$ \overline{\mathrm{T}} $$s irrelevant deformations of 2D integrable field theories
J. High Energ. Phys. 2019, 120 (2019) [Crossref] -
Jeong et al., Entanglement and Rényi entropy of multiple intervals in
TT¯
-deformed CFT and holography
Phys. Rev. D 100, 106015 (2019) [Crossref] -
Hernández-Chifflet et al., Flow Equations for Generalized
TT¯
Deformations
Phys. Rev. Lett. 124, 200601 (2020) [Crossref] -
Conti et al., The $$ \mathrm{T}\overline{\mathrm{T}} $$ perturbation and its geometric interpretation
J. High Energ. Phys. 2019, 85 (2019) [Crossref] -
Anninos et al., Charged quantum fields in AdS$_2$
SciPost Phys. 7, 054 (2019) [Crossref] -
Chakraborty et al., Thermodynamics of $$ \mathrm{T}\overline{\mathrm{T}} $$, $$ \mathrm{J}\overline{\mathrm{T}} $$, $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed conformal field theories
J. High Energ. Phys. 2020, 188 (2020) [Crossref] -
Manschot et al., Supersymmetric black holes and
TT¯
deformation
Phys. Rev. D 107, L121903 (2023) [Crossref] -
Ashkenazi et al., Linear response of entanglement entropy to $$ T\overline{T} $$ in massive QFTs
J. High Energ. Phys. 2023, 77 (2023) [Crossref] -
Araujo, Nonlocal charges from marginal deformations of 2D CFTs: Holographic
TT¯
&
TJ¯
, and Yang-Baxter deformations
Phys. Rev. D 101, 025008 (2020) [Crossref] -
Grumiller et al., Limits of JT gravity
J. High Energ. Phys. 2021, 134 (2021) [Crossref] -
Castro-Alvaredo et al., Entanglement entropy from form factors in $$ \textrm{T}\overline{\textrm{T}} $$-deformed integrable quantum field theories
J. High Energ. Phys. 2023, 129 (2023) [Crossref] -
Frolov, $T\overline T$-деформация и калибровка светового конуса
Труды Математического института имени В. А. Стеклова 309, 120 (2020) [Crossref] -
Hansen et al., Geometrizing non-relativistic bilinear deformations
J. High Energ. Phys. 2021, 186 (2021) [Crossref] -
Jiang et al., Supersymmetric J $$ \overline{T} $$ and T $$ \overline{J} $$ deformations
J. High Energ. Phys. 2020, 140 (2020) [Crossref] -
Guica et al., Infinite pseudo-conformal symmetries of classical $T \bar T$, $J \bar T $ and $J T_a$ - deformed CFTs
SciPost Phys. 11, 078 (2021) [Crossref] -
Aramini et al., Deforming the ODE/IM correspondence with $$ \textrm{T}\overline{\textrm{T}} $$
J. High Energ. Phys. 2023, 84 (2023) [Crossref] -
Bagchi et al., Beyond Wilson? Carroll from current deformations
J. High Energ. Phys. 2024, 215 (2024) [Crossref] -
Hashimoto et al.,
$$ T\overline{T},J\overline{T},T\overline{J} $$ partition sums from string theory
J. High Energ. Phys. 2020, 80 (2020) [Crossref] -
Baggio et al., On $$ T\overline{T} $$ deformations and supersymmetry
J. High Energ. Phys. 2019, 63 (2019) [Crossref] -
He et al., Pseudo entropy of primary operators in $$ T\overline{T}/J\overline{T} $$-deformed CFTs
J. High Energ. Phys. 2023, 25 (2023) [Crossref] -
Roychowdhury, Analytic integrability for holographic duals with $$ J\overline{T} $$ deformations
J. High Energ. Phys. 2020, 53 (2020) [Crossref] -
Asrat, KdV charges and the generalized torus partition sum in TT‾ deformation
Nuclear Physics B 958, 115119 115119 (2020) [Crossref] -
Chakraborty et al., Holographic complexity of LST and single trace $$ T\overline{T} $$
J. High Energ. Phys. 2021, 275 (2021) [Crossref] -
Nakayama, Conformal equations that are not Virasoro or Weyl invariant
Lett Math Phys 109, 2255 (2019) [Crossref] -
Datta et al., Characters of irrelevant deformations
J. High Energ. Phys. 2021, 162 (2021) [Crossref] -
He et al.,
T
$$ \overline{T} $$-flow effects on torus partition functions
J. High Energ. Phys. 2021, 61 (2021) [Crossref] -
Sfondrini et al., TT¯
deformations as
TsT
transformations
Phys. Rev. D 101, 066022 (2020) [Crossref] -
Ceschin et al.,
$$ \mathrm{T}\overline{\mathrm{T}} $$-deformed nonlinear Schrödinger
J. High Energ. Phys. 2021, 121 (2021) [Crossref] -
He et al., Irrelevant and marginal deformed BMS field theories
J. High Energ. Phys. 2024, 138 (2024) [Crossref] -
Guica, Symmetries versus the spectrum of $ J\bar T$-deformed CFTs
SciPost Phys. 10, 065 (2021) [Crossref] -
Gorbenko et al., dS/dS and $$ T\overline{T} $$
J. High Energ. Phys. 2019, 85 (2019) [Crossref] -
Grieninger, Entanglement entropy and $$ T\overline{T} $$ deformations beyond antipodal points from holography
J. High Energ. Phys. 2019, 171 (2019) [Crossref] -
Castro-Alvaredo et al., Completing the bootstrap program for
T
T
―
-deformed massive integrable quantum field theories
J. Phys. A: Math. Theor. 57, 265401 (2024) [Crossref] -
Cotler et al., A theory of reparameterizations for AdS3 gravity
J. High Energ. Phys. 2019, 79 (2019) [Crossref] -
Nakayama, Holographic dual of conformal field theories with very special
TJ¯
deformations
Phys. Rev. D 100, 086011 (2019) [Crossref] -
Esper et al.,
$$ T\overline{T} $$ deformations of non-relativistic models
J. High Energ. Phys. 2021, 101 (2021) [Crossref] -
Ebert et al.,
T
$$ \overline{T} $$ deformation in SCFTs and integrable supersymmetric theories
J. High Energ. Phys. 2021, 82 (2021) [Crossref] -
He et al., Correlation functions, entanglement and chaos in the $$ T\overline{T}/J\overline{T} $$-deformed CFTs
J. High Energ. Phys. 2020, 88 (2020) [Crossref] -
Jiang et al., TT¯
deformations with
N=(0,2)
supersymmetry
Phys. Rev. D 100, 046017 (2019) [Crossref] -
Ferko et al., Sequential flows by irrelevant operators
SciPost Phys. 14, 098 (2023) [Crossref] -
Apolo et al., TsT, black holes, and $$ T\overline{T} $$ + $$ J\overline{T} $$ + $$ T\overline{J} $$
J. High Energ. Phys. 2022, 177 (2022) [Crossref] -
He et al., Correlation functions of CFTs on a torus with a
TT¯
deformation
Phys. Rev. D 102, 026023 (2020) [Crossref] -
Babaei-Aghbolagh et al., Marginal
TT¯
-like deformation and modified Maxwell theories in two dimensions
Phys. Rev. D 106, 086022 (2022) [Crossref] -
van Dongen et al., Emergence and correspondence for string theory black holes
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 69, 112 (2020) [Crossref] -
Morone et al., Gravity and TT‾ flows in higher dimensions
Nuclear Physics B 1005, 116605 116605 (2024) [Crossref] -
Nastase et al., A $$ T\overline{T} $$-like deformation of the Skyrme model and the Heisenberg model of nucleon-nucleon scattering
J. High Energ. Phys. 2021, 19 (2021) [Crossref] -
Borsato et al., Marginal deformations of WZW models and the classical Yang–Baxter equation
J. Phys. A: Math. Theor. 52, 225401 (2019) [Crossref] -
Borsato, Lecture notes on current–current deformations
Eur. Phys. J. C 84, 648 (2024) [Crossref] -
Ferko et al., Root-
TT¯
Deformations in Two-Dimensional Quantum Field Theories
Phys. Rev. Lett. 129, 201604 (2022) [Crossref] -
Ojeda et al., Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies
J. High Energ. Phys. 2019, 79 (2019) [Crossref] -
Guica, A definition of primary operators in $J\bar T$-deformed CFTs
SciPost Phys. 13, 045 (2022) [Crossref] -
Araujo et al., Holographic integration of $$ T\overline{T} $$ & $$ J\overline{T} $$ via O(d, d)
J. High Energ. Phys. 2019, 168 (2019) [Crossref] -
Caputa et al., Sphere partition functions & cut-off AdS
J. High Energ. Phys. 2019, 112 (2019) [Crossref] -
He et al., Genus two correlation functions in CFTs with $$T\bar T$$ deformation
Sci. China Phys. Mech. Astron. 66, 251011 (2023) [Crossref] -
Frolov, $$T\overline T $$ Deformation and the Light-Cone Gauge
Proc. Steklov Inst. Math. 309, 107 (2020) [Crossref] -
Song et al., Structure constants from modularity in warped CFT
J. High Energ. Phys. 2019, 211 (2019) [Crossref] -
Castro-Alvaredo et al., Form factors and correlation functions of $$ \textrm{T}\overline{\textrm{T}} $$-deformed integrable quantum field theories
J. High Energ. Phys. 2023, 48 (2023) [Crossref] -
Haco et al., Black hole entropy and soft hair
J. High Energ. Phys. 2018, 98 (2018) [Crossref] -
Kapec et al., Photon rings around warped black holes
Class. Quantum Grav. 40, 095006 (2023) [Crossref] -
Nastase et al., Soliton, breather and shockwave solutions of the Heisenberg and the $$ T\overline{T} $$ deformations of scalar field theories in 1+1 dimensions
J. High Energ. Phys. 2021, 106 (2021) [Crossref] -
Tolley,
$$ T\overline{T} $$ deformations, massive gravity and non-critical strings
J. High Energ. Phys. 2020, 50 (2020) [Crossref] -
Apolo et al., TsT, $$ \mathrm{T}\overline{\mathrm{T}} $$ and black strings
J. High Energ. Phys. 2020, 109 (2020) [Crossref] -
Chang et al., TT¯
flows and (2, 2) supersymmetry
Phys. Rev. D 101, 026008 (2020) [Crossref] -
Detournay et al., Warped flatland
J. High Energ. Phys. 2020, 61 (2020) [Crossref] -
Aharony et al., Modular covariance and uniqueness of $$ J\overline{T} $$ deformed CFTs
J. High Energ. Phys. 2019, 85 (2019) [Crossref] -
Guica, On correlation functions in $J\bar{T}$ -deformed CFTs
J. Phys. A: Math. Theor. 52, 184003 (2019) [Crossref] -
Ferko et al., ModMax oscillators and root-
TT¯
-like flows in supersymmetric quantum mechanics
Phys. Rev. D 108, 046013 (2023) [Crossref] -
De Nardis et al., Correlation functions and transport coefficients in generalised hydrodynamics
J. Stat. Mech. 2022, 014002 (2022) [Crossref] -
Aharony et al., Modular invariance and uniqueness of $$ T\overline{T} $$ deformed CFT
J. High Energ. Phys. 2019, 86 (2019) [Crossref] -
Chakraborty et al.,
$$ T\overline{T} $$ and $$ J\overline{T} $$ deformations in quantum mechanics
J. High Energ. Phys. 2020, 99 (2020) [Crossref] -
Castro-Alvaredo et al., On the representation of minimal form factors in integrable quantum field theory
Nuclear Physics B 1000, 116459 116459 (2024) [Crossref] -
Kruthoff et al., On the flow of states under $T\overline{T}$
SciPost Phys. 9, 078 (2020) [Crossref] -
Pozsgay et al.,
$$ T\overline{T} $$-deformation and long range spin chains
J. High Energ. Phys. 2020, 92 (2020) [Crossref] -
Aguilera-Damia et al., A path integral realization of joint $$ J\overline{T} $$, $$ T\overline{J} $$ and $$ T\overline{T} $$ flows
J. High Energ. Phys. 2020, 85 (2020) [Crossref] -
Babaei-Aghbolagh et al.,
$$ T\overline{T} $$-like flows in non-linear electrodynamic theories and S-duality
J. High Energ. Phys. 2021, 187 (2021) [Crossref] -
Chakraborty et al., Entanglement entropy for $$ \mathrm{T}\overline{\mathrm{T}} $$, $$ \mathrm{J}\overline{\mathrm{T}} $$, $$ \mathrm{T}\overline{\mathrm{J}} $$ deformed holographic CFT
J. High Energ. Phys. 2021, 96 (2021) [Crossref] -
Jiang, A pedagogical review on solvable irrelevant deformations of 2D quantum field theory
Commun. Theor. Phys. 73, 057201 (2021) [Crossref] -
Chakraborty et al., States, symmetries and correlators of $T\bar{T}$ and $ J\bar{T} $ symmetric orbifolds
SciPost Phys. 16, 011 (2024) [Crossref] -
Asrat et al., TT¯
, the entanglement wedge cross section, and the breakdown of the split property
Phys. Rev. D 102, 045009 (2020) [Crossref] -
He et al., TT¯/JT¯
-deformed WZW models from Chern-Simons
AdS3
gravity with mixed boundary conditions
Phys. Rev. D 103, 126019 (2021) [Crossref] -
Anous et al., A general definition of $JT_a$ -- deformed QFTs
SciPost Phys. 10, 096 (2021) [Crossref] -
Roychowdhury, Penrose limit for holographic duals of
JT¯
deformations
J. Phys. A: Math. Theor. 54, 335401 (2021) [Crossref] -
Nakayama, Very special
TJ¯
deformed CFT
Phys. Rev. D 99, 085008 (2019) [Crossref] -
Rosenhaus et al., Integrability and renormalization under
TT¯
Phys. Rev. D 102, 065009 (2020) [Crossref] -
Dorey et al., Geometric aspects of the ODE/IM correspondence
J. Phys. A: Math. Theor. 53, 223001 (2020) [Crossref] -
Medenjak et al., Thermal transport in
TT¯
-deformed conformal field theories: From integrability to holography
Phys. Rev. D 103, 066012 (2021) [Crossref] -
Córdova et al., Thermodynamic Bethe Ansatz past turning points: the (elliptic) sinh-Gordon model
J. High Energ. Phys. 2022, 35 (2022) [Crossref] -
He, Note on higher-point correlation functions of the $$T\bar T$$ or $$J\bar T$$ deformed CFTs
Sci. China Phys. Mech. Astron. 64, 291011 (2021) [Crossref] -
Aggarwal et al., Near-extremal limits of warped black holes
SciPost Phys. 15, 083 (2023) [Crossref] -
Cui et al., Correlation functions in the $${\text{TsT}}/T\overline{T }$$ correspondence
J. High Energ. Phys. 2024, 17 (2024) [Crossref] -
Frolov, $ \newcommand{\ov}{\over} \boldsymbol {T\overline{T}}$ , $ \newcommand{\om}{\omega} \newcommand{\w}{\omega} \boldsymbol{\widetilde J J}$ , JT and $ \newcommand{\om}{\omega} \newcommand{\w}{\omega} \boldsymbol {\widetilde JT}$ deformations
J. Phys. A: Math. Theor. 53, 025401 (2020) [Crossref] -
Jiang et al., Irrelevant deformations with boundaries and defects
J. Stat. Mech. 2022, 043102 (2022) [Crossref] -
Shyam et al., $$ T\overline{T} $$ deformed scattering happens within matrices
J. High Energ. Phys. 2023, 132 (2023) [Crossref] -
Apolo et al., On the universal behavior of $$ T\overline{T} $$-deformed CFTs: single and double-trace partition functions at large c
J. High Energ. Phys. 2023, 210 (2023) [Crossref] -
Le Floch et al., KdV charges in TTbar theories and new models with super-Hagedorn behavior
SciPost Phys. 7, 043 (2019) [Crossref] -
Ebrahim et al., Holographic entanglement entropy and mutual information in deformed field theories at finite temperature
Phys. Rev. D 107, 086010 (2023) [Crossref] -
Detournay et al., Boundary conditions for extremal black holes from 2d gravity
SciPost Phys. 16, 141 (2024) [Crossref] -
Aggarwal et al., Boundary conditions for warped AdS3 in quadratic ensemble
J. High Energ. Phys. 2022, 13 (2022) [Crossref] -
Jiang, Expectation value of $$ \mathrm{T}\overline{\mathrm{T}} $$ operator in curved spacetimes
J. High Energ. Phys. 2020, 94 (2020) [Crossref] -
Chaturvedi et al., A note on the complex SYK model and warped CFTs
J. High Energ. Phys. 2018, 101 (2018) [Crossref] -
Asrat, Entropic c–functions in TT‾,JT‾,TJ‾ deformations
Nuclear Physics B 960, 115186 115186 (2020) [Crossref] -
Sun et al., Note on the Rényi entropy of 2D perturbed fermions
Phys. Rev. D 99, 106008 (2019) [Crossref] -
Apolo et al., Heating up holography for single-trace $$ J\overline{T} $$ deformations
J. High Energ. Phys. 2020, 141 (2020) [Crossref] -
Banerjee et al., Entanglement entropy for TT deformed CFT in general dimensions
Nuclear Physics B 948, 114775 114775 (2019) [Crossref] -
Post et al., A universe field theory for JT gravity
J. High Energ. Phys. 2022, 118 (2022) [Crossref]
Author / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 3 4 Monica Guica
- 1 Commissariat à l'énergie atomique / CEA Saclay [CEA Saclay]
- 2 Kungliga Tekniska högskolan / Royal Institute of Technology (KTH) [KTH]
- 3 Stockholm University [Univ Stockholm]
- 4 Uppsala universitet / Uppsala University
- European Research Council [ERC]
- Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation) (through Organization: Knut och Alice Wallenbergs Stiftelse / Knut and Alice Wallenberg Foundation)
- Vetenskapsrådet / Swedish Research Council