Foliated fracton order from gauging subsystem symmetries
Wilbur Shirley, Kevin Slagle, Xie Chen
SciPost Phys. 6, 041 (2019) · published 2 April 2019
- doi: 10.21468/SciPostPhys.6.4.041
- Submissions/Reports
-
Abstract
Based on several previous examples, we summarize explicitly the general procedure to gauge models with subsystem symmetries, which are symmetries with generators that have support within a sub-manifold of the system. The gauging process can be applied to any local quantum model on a lattice that is invariant under the subsystem symmetry. We focus primarily on simple 3D paramagnetic states with planar symmetries. For these systems, the gauged theory may exhibit foliated fracton order and we find that the species of symmetry charges in the paramagnet directly determine the resulting foliated fracton order. Moreover, we find that gauging linear subsystem symmetries in 2D or 3D models results in a self-duality similar to gauging global symmetries in 1D.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.6.4.041
TI - Foliated fracton order from gauging subsystem symmetries
PY - 2019/04/02
UR - https://www.scipost.org/SciPostPhys.6.4.041
JF - SciPost Physics
JA - SciPost Phys.
VL - 6
IS - 4
SP - 041
A1 - Shirley, Wilbur
AU - Slagle, Kevin
AU - Chen, Xie
AB - Based on several previous examples, we summarize explicitly the general procedure to gauge models with subsystem symmetries, which are symmetries with generators that have support within a sub-manifold of the system. The gauging process can be applied to any local quantum model on a lattice that is invariant under the subsystem symmetry. We focus primarily on simple 3D paramagnetic states with planar symmetries. For these systems, the gauged theory may exhibit foliated fracton order and we find that the species of symmetry charges in the paramagnet directly determine the resulting foliated fracton order. Moreover, we find that gauging linear subsystem symmetries in 2D or 3D models results in a self-duality similar to gauging global symmetries in 1D.
ER -
@Article{10.21468/SciPostPhys.6.4.041,
title={{Foliated fracton order from gauging subsystem symmetries}},
author={Wilbur Shirley and Kevin Slagle and Xie Chen},
journal={SciPost Phys.},
volume={6},
pages={041},
year={2019},
publisher={SciPost},
doi={10.21468/SciPostPhys.6.4.041},
url={https://scipost.org/10.21468/SciPostPhys.6.4.041},
}
Cited by 113

-
Li et al., Renormalization group analysis on emergence of higher rank symmetry and higher moment conservation
Phys. Rev. Research 3, 043176 (2021) [Crossref] -
Yan, Hyperbolic fracton model, subsystem symmetry, and holography. II. The dual eight-vertex model
Phys. Rev. B 100, 245138 (2019) [Crossref] -
Gorantla et al., Fractons on graphs and complexity
Phys. Rev. B 106, 195139 (2022) [Crossref] -
Gorantla et al., Gapped lineon and fracton models on graphs
Phys. Rev. B 107, 125121 (2023) [Crossref] -
Tantivasadakarn et al., Hierarchy of Topological Order From Finite-Depth Unitaries, Measurement, and Feedforward
PRX Quantum 4, 020339 (2023) [Crossref] -
Hering et al., Fracton excitations in classical frustrated kagome spin models
Phys. Rev. B 104, 064406 (2021) [Crossref] -
Zhou et al., Detecting subsystem symmetry protected topological order through strange correlators
Phys. Rev. B 106, 214428 (2022) [Crossref] -
Devakul, Classifying local fractal subsystem symmetry-protected topological phases
Phys. Rev. B 99, 235131 (2019) [Crossref] -
Hsin et al., Gapped interfaces in fracton models and foliated fields
J. High Energ. Phys. 2023, 89 (2023) [Crossref] -
Tantivasadakarn et al., Pivot Hamiltonians as generators of symmetry and entanglement
SciPost Phys. 14, 012 (2023) [Crossref] -
Feng, Hidden subsystem symmetry protected states in competing topological orders
Phys. Rev. B 109, 075151 (2024) [Crossref] -
Cao et al., Subsystem non-invertible symmetry operators and defects
SciPost Phys. 15, 155 (2023) [Crossref] -
Shimamura, Anomaly of subsystem symmetries in exotic and foliated BF theories
J. High Energ. Phys. 2024, 2 (2024) [Crossref] -
Ibieta-Jimenez et al., Fractonlike phases from subsystem symmetries
Phys. Rev. B 102, 045104 (2020) [Crossref] -
Yan, Hyperbolic fracton model, subsystem symmetry, and holography
Phys. Rev. B 99, 155126 (2019) [Crossref] -
Shirley et al., Emergent fermionic gauge theory and foliated fracton order in the Chamon model
Phys. Rev. B 107, 035136 (2023) [Crossref] -
Song et al., Topological Defect Network Representations of Fracton Stabilizer Codes
PRX Quantum 4, 010304 (2023) [Crossref] -
Devakul et al., Strong planar subsystem symmetry-protected topological phases and their dual fracton orders
Phys. Rev. Research 2, 012059 (2020) [Crossref] -
Gorantla et al., fcc lattice, checkerboards, fractons, and quantum field theory
Phys. Rev. B 103, 205116 (2021) [Crossref] -
Chen et al., Exactly solvable lattice Hamiltonians and gravitational anomalies
SciPost Phys. 14, 089 (2023) [Crossref] -
Dua et al., Compactifying fracton stabilizer models
Phys. Rev. B 99, 245135 (2019) [Crossref] -
Stephen et al., Fractionalization of subsystem symmetries in two dimensions
Phys. Rev. B 106, 085104 (2022) [Crossref] -
Li et al., Fracton physics of spatially extended excitations. II. Polynomial ground state degeneracy of exactly solvable models
Phys. Rev. B 104, 235127 (2021) [Crossref] -
Dua et al., Engineering 3D Floquet Codes by Rewinding
PRX Quantum 5, 020305 (2024) [Crossref] -
May-Mann et al., Interaction-enabled fractonic higher-order topological phases
Phys. Rev. B 105, 245122 (2022) [Crossref] -
Brown et al., Parallelized quantum error correction with fracton topological codes
Phys. Rev. Research 2, 013303 (2020) [Crossref] -
Li et al., Fracton physics of spatially extended excitations
Phys. Rev. B 101, 245134 (2020) [Crossref] -
Stephen et al., Subsystem symmetry enriched topological order in three dimensions
Phys. Rev. Research 2, 033331 (2020) [Crossref] -
Rudelius et al., Fractons with twisted boundary conditions and their symmetries
Phys. Rev. B 103, 195113 (2021) [Crossref] -
Fontana et al., Lattice Clifford fractons and their Chern-Simons-like theory
SciPost Phys. Core 4, 012 (2021) [Crossref] -
Devakul et al., Fractalizing quantum codes
Quantum 5, 438 438 (2021) [Crossref] -
Hsin et al., Subsystem symmetry fractionalization and foliated field theory
SciPost Phys. 18, 147 (2025) [Crossref] -
Zarei et al., Foliated order parameter in a fracton phase transition
Phys. Rev. B 106, 035101 (2022) [Crossref] -
Gorantla et al., Global dipole symmetry, compact Lifshitz theory, tensor gauge theory, and fractons
Phys. Rev. B 106, 045112 (2022) [Crossref] -
Pai et al., Fracton fusion and statistics
Phys. Rev. B 100, 195136 (2019) [Crossref] -
Schmitz et al., Entanglement spectra of stabilizer codes: A window into gapped quantum phases of matter
Phys. Rev. B 99, 205109 (2019) [Crossref] -
Williamson et al., Designer non-Abelian fractons from topological layers
Phys. Rev. B 107, 035103 (2023) [Crossref] -
Bulmash et al., Multipole groups and fracton phenomena on arbitrary crystalline lattices
SciPost Phys. 15, 235 (2023) [Crossref] -
You et al., Fractonic Chern-Simons and BF theories
Phys. Rev. Research 2, 023249 (2020) [Crossref] -
Glorioso et al., Goldstone bosons and fluctuating hydrodynamics with dipole and momentum conservation
J. High Energ. Phys. 2023, 22 (2023) [Crossref] -
Manoj et al., Screw dislocations in the X-cube fracton model
SciPost Phys. 10, 094 (2021) [Crossref] -
Pace, Emergent generalized symmetries in ordered phases and applications to quantum disordering
SciPost Phys. 17, 080 (2024) [Crossref] -
Pace et al., Position-dependent excitations and UV/IR mixing in the
ZN
rank-2 toric code and its low-energy effective field theory
Phys. Rev. B 106, 045145 (2022) [Crossref] -
Zhang et al., Classification and construction of interacting fractonic higher-order topological phases
Phys. Rev. B 108, 045133 (2023) [Crossref] -
You et al., Emergent fractons and algebraic quantum liquid from plaquette melting transitions
Phys. Rev. Research 2, 013162 (2020) [Crossref] -
Hsin et al., Comments on foliated gauge theories and dualities in 3+1d
SciPost Phys. 11, 032 (2021) [Crossref] -
Williamson et al., Fractonic matter in symmetry-enriched
U(1)
gauge theory
Phys. Rev. B 100, 125150 (2019) [Crossref] -
Li et al., Perturbative Stability and Error-Correction Thresholds of Quantum Codes
PRX Quantum 6, 010327 (2025) [Crossref] -
Cao et al., Boson-fermion duality with subsystem symmetry
Phys. Rev. B 106, 075150 (2022) [Crossref] -
Luo et al., Gauge-invariant and anyonic-symmetric autoregressive neural network for quantum lattice models
Phys. Rev. Research 5, 013216 (2023) [Crossref] -
Cao et al., Symmetry TFT for subsystem symmetry
J. High Energ. Phys. 2024, 225 (2024) [Crossref] -
You et al., Multipolar topological field theories: Bridging higher order topological insulators and fractons
Phys. Rev. B 103, 245128 (2021) [Crossref] -
Slagle et al., Foliated field theory and string-membrane-net condensation picture of fracton order
SciPost Phys. 6, 043 (2019) [Crossref] -
Sullivan et al., Fractonic topological phases from coupled wires
Phys. Rev. Research 3, 023123 (2021) [Crossref] -
Fechisin et al., Noninvertible Symmetry-Protected Topological Order in a Group-Based Cluster State
Phys. Rev. X 15, 011058 (2025) [Crossref] -
Dua et al., Sorting topological stabilizer models in three dimensions
Phys. Rev. B 100, 155137 (2019) [Crossref] -
Prem et al., Gauging permutation symmetries as a route to non-Abelian fractons
SciPost Phys. 7, 068 (2019) [Crossref] -
Pretko et al., Fracton phases of matter
Int. J. Mod. Phys. A 35, 2030003 (2020) [Crossref] -
Kibe et al., Stabilizer code model with noninvertible symmetries: Strange fractons, confinement, and noncommutative and non-Abelian fusion rules
Phys. Rev. D 110, 105019 (2024) [Crossref] -
He et al., Lieb-Schultz-Mattis–type constraints on fractonic matter
Phys. Rev. B 101, 165145 (2020) [Crossref] -
Ohmori et al., Foliated-exotic duality in fractonic BF theories
SciPost Phys. 14, 164 (2023) [Crossref] -
Li et al., Symmetry-enriched topological order from partially gauging symmetry-protected topologically ordered states assisted by measurements
Phys. Rev. B 108, 115144 (2023) [Crossref] -
Gromov, Towards Classification of Fracton Phases: The Multipole Algebra
Phys. Rev. X 9, 031035 (2019) [Crossref] -
Luo et al., Boundary theory of the X-cube model in the continuum
Phys. Rev. B 106, 195102 (2022) [Crossref] -
You et al., Intrinsic symmetry-protected topological mixed state from modulated symmetries and hierarchical structure of boundary anomaly
Phys. Rev. B 110, 165160 (2024) [Crossref] -
Gromov et al., On duality between Cosserat elasticity and fractons
SciPost Phys. 8, 065 (2020) [Crossref] -
Williamson et al., Type-II fractons from coupled spin chains and layers
Phys. Rev. B 103, 155140 (2021) [Crossref] -
You et al., Fractonic plaquette-dimer liquid beyond renormalization
Phys. Rev. B 106, 115145 (2022) [Crossref] -
Liu et al., Towards non-invertible anomalies from generalized Ising models
SciPost Phys. 15, 150 (2023) [Crossref] -
Dua et al., Bifurcating entanglement-renormalization group flows of fracton stabilizer models
Phys. Rev. Research 2, 033021 (2020) [Crossref] -
Wang et al., Foliated fracton order in the Majorana checkerboard model
Phys. Rev. B 100, 085127 (2019) [Crossref] -
Stephen et al., Detecting subsystem symmetry protected topological order via entanglement entropy
Phys. Rev. B 100, 115112 (2019) [Crossref] -
Gromov et al., Fracton hydrodynamics
Phys. Rev. Research 2, 033124 (2020) [Crossref] -
Ding et al., Boundary anomaly detection in two-dimensional subsystem symmetry-protected topological phases
Phys. Rev. B 111, 205125 (2025) [Crossref] -
Nussinov et al., Theorem on extensive spectral degeneracy for systems with rigid higher symmetries in general dimensions
Phys. Rev. B 107, 045109 (2023) [Crossref] -
Weinstein et al., Universality Classes of Stabilizer Code Hamiltonians
Phys. Rev. Lett. 123, 230503 (2019) [Crossref] -
Armas et al., Ideal fracton superfluids
SciPost Phys. 16, 039 (2024) [Crossref] -
Shirley et al., Twisted foliated fracton phases
Phys. Rev. B 102, 115103 (2020) [Crossref] -
Aasen et al., Topological defect networks for fractons of all types
Phys. Rev. Research 2, 043165 (2020) [Crossref] -
Tantivasadakarn et al., Long-Range Entanglement from Measuring Symmetry-Protected Topological Phases
Phys. Rev. X 14, 021040 (2024) [Crossref] -
Stephen et al., Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter
Quantum 3, 142 142 (2019) [Crossref] -
Hart et al., Spectroscopic fingerprints of gapless type-II fracton phases
Phys. Rev. B 105, L180416 (2022) [Crossref] -
Sullivan et al., Planar p-string condensation: Chiral fracton phases from fractional quantum Hall layers and beyond
Phys. Rev. B 103, 205301 (2021) [Crossref] -
Doshi et al., Vortices as fractons
Commun Phys 4, 44 (2021) [Crossref] -
Burnell et al., Filling constraints on translation invariant dipole conserving systems
Phys. Rev. B 110, L121113 (2024) [Crossref] -
Tantivasadakarn et al., Non-Abelian hybrid fracton orders
Phys. Rev. B 104, 115117 (2021) [Crossref] -
Gu et al., Doped stabilizer states in many-body physics and where to find them
Phys. Rev. A 110, 062427 (2024) [Crossref] -
Tantivasadakarn et al., Building models of topological quantum criticality from pivot Hamiltonians
SciPost Phys. 14, 013 (2023) [Crossref] -
Shukla et al., Tensor network approach to two-dimensional bosonization
Phys. Rev. B 101, 155105 (2020) [Crossref] -
Chen et al., Fractonic superfluids. II. Condensing subdimensional particles
Phys. Rev. Research 3, 013226 (2021) [Crossref] -
You et al., Building fracton phases by Majorana manipulation
Phys. Rev. Research 1, 013011 (2019) [Crossref] -
Garre-Rubio, Emergent (2+1)D topological orders from iterative (1+1)D gauging
Nat Commun 15, 7986 (2024) [Crossref] -
Lam et al., Topological dipole insulator
SciPost Phys. 17, 137 (2024) [Crossref] -
Song et al., Quantum many-body calculations using body-centered cubic lattices
Phys. Rev. C 104, 044304 (2021) [Crossref] -
Tu et al., Non-Abelian fracton order from gauging a mixture of subsystem and global symmetries
Phys. Rev. Research 3, 043084 (2021) [Crossref] -
Tantivasadakarn, Jordan-Wigner dualities for translation-invariant Hamiltonians in any dimension: Emergent fermions in fracton topological order
Phys. Rev. Research 2, 023353 (2020) [Crossref] -
Cao et al., Generating lattice non-invertible symmetries
SciPost Phys. 17, 104 (2024) [Crossref] -
Lam, Classification of dipolar symmetry-protected topological phases: Matrix product states, stabilizer Hamiltonians, and finite tensor gauge theories
Phys. Rev. B 109, 115142 (2024) [Crossref] -
Hsin et al., On topology of the moduli space of gapped Hamiltonians for topological phases
64, 041901 (2023) [Crossref] -
Xue et al., Entanglement renormalization of fractonic anisotropic
ZN
Laplacian models
Phys. Rev. B 111, 205105 (2025) [Crossref] -
Burnell et al., Anomaly inflow for subsystem symmetries
Phys. Rev. B 106, 085113 (2022) [Crossref] -
Bulmash et al., Gauging fractons: Immobile non-Abelian quasiparticles, fractals, and position-dependent degeneracies
Phys. Rev. B 100, 155146 (2019) [Crossref] -
Vadali et al., Composite subsystem symmetries and decoration of sub-dimensional excitations
SciPost Phys. 17, 071 (2024) [Crossref] -
Córdova et al., Non-invertible symmetries in finite-group gauge theory
SciPost Phys. 18, 019 (2025) [Crossref] -
Wang et al., Higher-rank tensor non-Abelian field theory: Higher-moment or subdimensional polynomial global symmetry, algebraic variety, Noether's theorem, and gauging
Phys. Rev. Research 3, 013185 (2021) [Crossref] -
Rayhaun et al., Higher-form subsystem symmetry breaking: Subdimensional criticality and fracton phase transitions
SciPost Phys. 15, 017 (2023) [Crossref] -
Tantivasadakarn et al., Hybrid fracton phases: Parent orders for liquid and nonliquid quantum phases
Phys. Rev. B 103, 245136 (2021) [Crossref] -
Fuji, Anisotropic layer construction of anisotropic fracton models
Phys. Rev. B 100, 235115 (2019) [Crossref] -
Slagle, Foliated Quantum Field Theory of Fracton Order
Phys. Rev. Lett. 126, 101603 (2021) [Crossref] -
Yuan et al., Fractonic superfluids
Phys. Rev. Research 2, 023267 (2020) [Crossref] -
Tantivasadakarn et al., Symmetric Finite-Time Preparation of Cluster States via Quantum Pumps
Phys. Rev. Lett. 129, 090501 (2022) [Crossref] -
Spieler, Exotic field theories for (hybrid) fracton phases from imposing constraints in foliated field theory
J. High Energ. Phys. 2023, 178 (2023) [Crossref] -
You, Quantum Liquids: Emergent Higher-Rank Gauge Theory and Fractons
16, 83 (2025) [Crossref]
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Wilbur Shirley,
- 1 2 Kevin Slagle,
- 1 Xie Chen