Fast counting with tensor networks
Stefanos Kourtis, Claudio Chamon, Eduardo R. Mucciolo, Andrei E. Ruckenstein
SciPost Phys. 7, 060 (2019) · published 12 November 2019
- doi: 10.21468/SciPostPhys.7.5.060
- Submissions/Reports
Abstract
We introduce tensor network contraction algorithms for counting satisfying assignments of constraint satisfaction problems (#CSPs). We represent each arbitrary #CSP formula as a tensor network, whose full contraction yields the number of satisfying assignments of that formula, and use graph theoretical methods to determine favorable orders of contraction. We employ our heuristics for the solution of #P-hard counting boolean satisfiability (#SAT) problems, namely monotone #1-in-3SAT and #Cubic-Vertex-Cover, and find that they outperform state-of-the-art solvers by a significant margin.
Cited by 24
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Stefanos Kourtis,
- 1 Claudio Chamon,
- 2 Eduardo Mucciolo,
- 1 Andrei E. Ruckenstein
Funders for the research work leading to this publication