Reproducing topological properties with quasi-Majorana states
Adriaan Vuik, Bas Nijholt, Anton R. Akhmerov, Michael Wimmer
SciPost Phys. 7, 061 (2019) · published 12 November 2019
- doi: 10.21468/SciPostPhys.7.5.061
- Submissions/Reports
Abstract
Andreev bound states in hybrid superconductor-semiconductor devices can have near-zero energy in the topologically trivial regime as long as the confinement potential is sufficiently smooth. These quasi-Majorana states show zero-bias conductance features in a topologically trivial phase, mimicking spatially separated topological Majorana states. We show that in addition to the suppressed coupling between the quasi-Majorana states, also the coupling of these states across a tunnel barrier to the outside is exponentially different for increasing magnetic field. As a consequence, quasi-Majorana states mimic most of the proposed Majorana signatures: quantized zero-bias peaks, the $4\pi$ Josephson effect, and the tunneling spectrum in presence of a normal quantum dot. We identify a quantized conductance dip instead of a peak in the open regime as a distinguishing feature of true Majorana states in addition to having a bulk topological transition. Because braiding schemes rely only on the ability to couple to individual Majorana states, the exponential control over coupling strengths allows to also use quasi-Majorana states for braiding. Therefore, while the appearance of quasi-Majorana states complicates the observation of topological Majorana states, it opens an alternative route towards braiding of non-Abelian anyons and protected quantum computation.
TY - JOUR
PB - SciPost Foundation
DO - 10.21468/SciPostPhys.7.5.061
TI - Reproducing topological properties with quasi-Majorana states
PY - 2019/11/12
UR - https://www.scipost.org/SciPostPhys.7.5.061
JF - SciPost Physics
JA - SciPost Phys.
VL - 7
IS - 5
SP - 061
A1 - Vuik, Adriaan
AU - Nijholt, Bas
AU - Akhmerov, Anton R.
AU - Wimmer, Michael
AB - Andreev bound states in hybrid superconductor-semiconductor devices can have near-zero energy in the topologically trivial regime as long as the confinement potential is sufficiently smooth. These quasi-Majorana states show zero-bias conductance features in a topologically trivial phase, mimicking spatially separated topological Majorana states. We show that in addition to the suppressed coupling between the quasi-Majorana states, also the coupling of these states across a tunnel barrier to the outside is exponentially different for increasing magnetic field. As a consequence, quasi-Majorana states mimic most of the proposed Majorana signatures: quantized zero-bias peaks, the $4\pi$ Josephson effect, and the tunneling spectrum in presence of a normal quantum dot. We identify a quantized conductance dip instead of a peak in the open regime as a distinguishing feature of true Majorana states in addition to having a bulk topological transition. Because braiding schemes rely only on the ability to couple to individual Majorana states, the exponential control over coupling strengths allows to also use quasi-Majorana states for braiding. Therefore, while the appearance of quasi-Majorana states complicates the observation of topological Majorana states, it opens an alternative route towards braiding of non-Abelian anyons and protected quantum computation.
ER -
@Article{10.21468/SciPostPhys.7.5.061,
title={{Reproducing topological properties with quasi-Majorana states}},
author={Adriaan Vuik and Bas Nijholt and Anton R. Akhmerov and Michael Wimmer},
journal={SciPost Phys.},
volume={7},
pages={061},
year={2019},
publisher={SciPost},
doi={10.21468/SciPostPhys.7.5.061},
url={https://scipost.org/10.21468/SciPostPhys.7.5.061},
}
Cited by 175
-
Tsintzis et al., Majorana Qubits and Non-Abelian Physics in Quantum Dot–Based Minimal Kitaev Chains
PRX Quantum 5, 010323 (2024) [Crossref] -
Kuiri et al., Nonlocal transport signatures of topological superconductivity in a phase-biased planar Josephson junction
Phys. Rev. B 108, 205405 (2023) [Crossref] -
Cheng et al., Machine learning detection of Majorana zero modes from zero-bias peak measurements
Matter 7, 2507 (2024) [Crossref] -
Lai et al., Quality factor for zero-bias conductance peaks in Majorana nanowire
Phys. Rev. B 106, 094504 (2022) [Crossref] -
Dvir et al., Realization of a minimal Kitaev chain in coupled quantum dots
Nature 614, 445 (2023) [Crossref] -
Shvetsov et al., Magnetically stable zero-bias anomaly in Andreev contact to the magnetic Weyl semimetal Co3Sn2S2
EPL 132, 67002 (2020) [Crossref] -
He et al., Disorder-independent topological superconductor realized by antiferromagnetic Rashba nanowires with superconducting proximity effect
Eur. Phys. J. Plus 137, 935 (2022) [Crossref] -
Rančić, Exactly solving the Kitaev chain and generating Majorana-zero-modes out of noisy qubits
Sci Rep 12, 19882 (2022) [Crossref] -
Chuburin et al., Behavior of Andreev states for topological phase transition
Theor Math Phys 208, 977 (2021) [Crossref] -
Hess et al., Local and nonlocal quantum transport due to Andreev bound states in finite Rashba nanowires with superconducting and normal sections
Phys. Rev. B 104, 075405 (2021) [Crossref] -
Thamm et al., Machine Learning Optimization of Majorana Hybrid Nanowires
Phys. Rev. Lett. 130, 116202 (2023) [Crossref] -
Avila et al., Non-hermitian topology as a unifying framework for the Andreev versus Majorana states controversy
Commun Phys 2, 133 (2019) [Crossref] -
Woods et al., Charge-Impurity Effects in Hybrid Majorana Nanowires
Phys. Rev. Applied 16, 054053 (2021) [Crossref] -
Zhang et al., Next steps of quantum transport in Majorana nanowire devices
Nat Commun 10, 5128 (2019) [Crossref] -
Kejriwal et al., Nonlocal conductance and the detection of Majorana zero modes: Insights from von Neumann entropy
Phys. Rev. B 105, L161403 (2022) [Crossref] -
Schulenborg et al., Absence of supercurrent sign reversal in a topological junction with a quantum dot
Phys. Rev. B 101, 014512 (2020) [Crossref] -
Singh et al., Conductance spectroscopy of Majorana zero modes in superconductor-magnetic insulator nanowire hybrid systems
Commun Phys 6, 36 (2023) [Crossref] -
Ziesen et al., Statistical Majorana Bound State Spectroscopy
Phys. Rev. Lett. 130, 106001 (2023) [Crossref] -
Cuozzo et al., Microwave-tunable diode effect in asymmetric SQUIDs with topological Josephson junctions
Phys. Rev. Research 6, 023011 (2024) [Crossref] -
Ávila et al., Majorana oscillations and parity crossings in semiconductor nanowire-based transmon qubits
Phys. Rev. Research 2, 033493 (2020) [Crossref] -
Fu et al., Experimental review on Majorana zero-modes in hybrid nanowires
Sci. China Phys. Mech. Astron. 64, 107001 (2021) [Crossref] -
Ricco et al., Interaction induced hybridization of Majorana zero modes in a coupled quantum-dot–superconducting-nanowire hybrid system
Phys. Rev. B 102, 165104 (2020) [Crossref] -
Duse et al., Role of dephasing on the conductance signatures of Majorana zero modes
J. Phys.: Condens. Matter 33, 365301 (2021) [Crossref] -
Zhang et al., Suppressing Andreev Bound State Zero Bias Peaks Using a Strongly Dissipative Lead
Phys. Rev. Lett. 128, 076803 (2022) [Crossref] -
Pöschl et al., Nonlocal signatures of hybridization between quantum dot and Andreev bound states
Phys. Rev. B 106, L161301 (2022) [Crossref] -
Levajac et al., Subgap spectroscopy along hybrid nanowires by nm-thick tunnel barriers
Nat Commun 14, 6647 (2023) [Crossref] -
Pan et al., Three-terminal nonlocal conductance in Majorana nanowires: Distinguishing topological and trivial in realistic systems with disorder and inhomogeneous potential
Phys. Rev. B 103, 014513 (2021) [Crossref] -
Marra et al., Majorana/Andreev crossover and the fate of the topological phase transition in inhomogeneous nanowires
J. Phys.: Condens. Matter 34, 124001 (2022) [Crossref] -
Das Sarma et al., Spectral properties, topological patches, and effective phase diagrams of finite disordered Majorana nanowires
Phys. Rev. B 108, 085416 (2023) [Crossref] -
Cayao et al., Distinguishing trivial and topological zero-energy states in long nanowire junctions
Phys. Rev. B 104, L020501 (2021) [Crossref] -
Min et al., Dynamical approach to improving Majorana qubits and distinguishing them from trivial bound states
Phys. Rev. B 105, 155412 (2022) [Crossref] -
Yu et al., Delocalized states in three-terminal superconductor-semiconductor nanowire devices
SciPost Phys. 15, 005 (2023) [Crossref] -
Yao et al., The differential conductance tunnel spectroscopy in an analytical solvable two-terminal Majorana device
New J. Phys. 24, 073015 (2022) [Crossref] -
Lesser et al., One-dimensional topological superconductivity based entirely on phase control
Phys. Rev. B 106, L241405 (2022) [Crossref] -
Woods et al., Enhanced topological protection in planar quasi-one-dimensional channels with periodically modulated width
Phys. Rev. B 101, 195435 (2020) [Crossref] -
Legg et al., Parity-protected superconducting diode effect in topological Josephson junctions
Phys. Rev. B 108, 214520 (2023) [Crossref] -
ten Haaf et al., A two-site Kitaev chain in a two-dimensional electron gas
Nature 630, 329 (2024) [Crossref] -
Khindanov et al., Visibility of noisy quantum dot-based measurements of Majorana qubits
SciPost Phys. 10, 127 (2021) [Crossref] -
Zeng et al., Partially separated Majorana modes in a disordered medium
Phys. Rev. B 105, 205122 (2022) [Crossref] -
Pan et al., Quantized and unquantized zero-bias tunneling conductance peaks in Majorana nanowires: Conductance below and above
2e2/h
Phys. Rev. B 103, 214502 (2021) [Crossref] -
Lászlóffy et al., Topological superconductivity from first principles. II. Effects from manipulation of spin spirals: Topological fragmentation, braiding, and quasi-Majorana bound states
Phys. Rev. B 108, 134513 (2023) [Crossref] -
Papaj et al., Creating Majorana modes from segmented Fermi surface
Nat Commun 12, 577 (2021) [Crossref] -
Puglia et al., Closing of the induced gap in a hybrid superconductor-semiconductor nanowire
Phys. Rev. B 103, 235201 (2021) [Crossref] -
Kotetes, Diagnosing topological phase transitions in 1D superconductors using Berry singularity markers
J. Phys.: Condens. Matter 34, 174003 (2022) [Crossref] -
Arora et al., On the conclusive detection of Majorana zero modes: conductance spectroscopy, disconnected entanglement entropy and the fermion parity noise
New J. Phys. 26, 023038 (2024) [Crossref] -
Awoga et al., Mitigating disorder-induced zero-energy states in weakly coupled superconductor-semiconductor hybrid systems
Phys. Rev. B 107, 184519 (2023) [Crossref] -
Zhang et al., Distinguishing between topological and quasi Majorana zero modes with a dissipative resonant level
Phys. Rev. B 102, 045111 (2020) [Crossref] -
Awoga et al., Robust topological superconductivity in weakly coupled nanowire-superconductor hybrid structures
Phys. Rev. B 105, 144509 (2022) [Crossref] -
Wu et al., Recent progress on non-Abelian anyons: from Majorana zero modes to topological Dirac fermionic modes
Sci. China Phys. Mech. Astron. 66, 267004 (2023) [Crossref] -
Woods et al., Subband occupation in semiconductor-superconductor nanowires
Phys. Rev. B 101, 045405 (2020) [Crossref] -
Luethi et al., Planar Josephson junctions in germanium: Effect of cubic spin-orbit interaction
Phys. Rev. B 107, 035435 (2023) [Crossref] -
Schulenborg et al., Detecting Majorana modes by readout of poisoning-induced parity flips
Phys. Rev. B 107, L121401 (2023) [Crossref] -
Razmadze et al., Supercurrent transport through
1e
-periodic full-shell Coulomb islands
Phys. Rev. B 109, L041302 (2024) [Crossref] -
Yao et al., Quantum transport theory of hybrid superconducting systems
Phys. Rev. B 108, 195402 (2023) [Crossref] -
Souto et al., Probing Majorana localization in minimal Kitaev chains through a quantum dot
Phys. Rev. Research 5, 043182 (2023) [Crossref] -
Pan et al., Physical mechanisms for zero-bias conductance peaks in Majorana nanowires
Phys. Rev. Research 2, 013377 (2020) [Crossref] -
Munk et al., Parity-to-charge conversion in Majorana qubit readout
Phys. Rev. Research 2, 033254 (2020) [Crossref] -
Marra, Majorana nanowires for topological quantum computation
132, 231101 (2022) [Crossref] -
Liu et al., Revealing the nonlocal coherent nature of Majorana devices from dissipative teleportation
Phys. Rev. B 101, 081406 (2020) [Crossref] -
Ménard et al., Conductance-Matrix Symmetries of a Three-Terminal Hybrid Device
Phys. Rev. Lett. 124, 036802 (2020) [Crossref] -
Mondal et al., Topological characterization and stability of Floquet Majorana modes in Rashba nanowires
Phys. Rev. B 107, 035427 (2023) [Crossref] -
Pal et al., Honing in on a topological zero-bias conductance peak
J. Phys.: Condens. Matter 36, 035601 (2024) [Crossref] -
Bittermann et al., Photonic cross-noise spectroscopy of Majorana bound states
Phys. Rev. B 110, 045429 (2024) [Crossref] -
Woods et al., Realizing Majorana Kramers pairs in two-channel InAs-Al nanowires with highly misaligned electric fields
Phys. Rev. B 108, 155142 (2023) [Crossref] -
Schuray et al., Transport signatures of Majorana bound states in superconducting hybrid structures
Eur. Phys. J. Spec. Top. 229, 593 (2020) [Crossref] -
Thamm et al., Transmission amplitude through a Coulomb blockaded Majorana wire
Phys. Rev. Research 3, 023221 (2021) [Crossref] -
Liu et al., Non-Hermiticity-stabilized Majorana zero modes in semiconductor-superconductor nanowires
Phys. Rev. B 106, 064505 (2022) [Crossref] -
Califrer et al., Proximity-induced zero-energy states indistinguishable from topological edge states
Phys. Rev. B 107, 045401 (2023) [Crossref] -
Zhang et al., In situ
tuning of dynamical Coulomb blockade on Andreev bound states in hybrid nanowire devices
Phys. Rev. B 108, 235416 (2023) [Crossref] -
Grivnin et al., Concomitant opening of a bulk-gap with an emerging possible Majorana zero mode
Nat Commun 10, 1940 (2019) [Crossref] -
Zhuang et al., Anomalous photon-assisted tunneling in periodically driven Majorana nanowires and BCS charge measurement
Phys. Rev. B 105, 165148 (2022) [Crossref] -
Aghaee et al., InAs-Al hybrid devices passing the topological gap protocol
Phys. Rev. B 107, 245423 (2023) [Crossref] -
Danon et al., Nonlocal Conductance Spectroscopy of Andreev Bound States: Symmetry Relations and BCS Charges
Phys. Rev. Lett. 124, 036801 (2020) [Crossref] -
Sharma et al., Hybridization energy oscillations of Majorana and Andreev bound states in semiconductor-superconductor nanowire heterostructures
Phys. Rev. B 101, 245405 (2020) [Crossref] -
Plekhanov et al., Quadrupole spin polarization as signature of second-order topological superconductors
Phys. Rev. B 103, L041401 (2021) [Crossref] -
Esin et al., Coalescence of Andreev Bound States on the Surface of a Chiral Topological Semimetal
Jetp Lett. 113, 662 (2021) [Crossref] -
Yu et al., Majorana quasi-particles and superconductor-semiconductor hybrid nanowires
Acta Phys. Sin. 69, 077303 (2020) [Crossref] -
Cayao et al., Confinement-induced zero-bias peaks in conventional superconductor hybrids
Phys. Rev. B 104, 134507 (2021) [Crossref] -
Li et al., Nonlocality of Majorana zero modes and teleportation: Self-consistent treatment based on the Bogoliubov–de Gennes equation
Phys. Rev. B 101, 205401 (2020) [Crossref] -
Torres Luna et al., Design of a Majorana trijunction
SciPost Phys. 16, 044 (2024) [Crossref] -
Nitsch et al., Interference and parity blockade in transport through a Majorana box
Phys. Rev. B 106, L201305 (2022) [Crossref] -
Forcellini et al., Properties of dissipative Floquet Majorana modes using a quantum dot
Phys. Rev. B 107, 195412 (2023) [Crossref] -
Tan et al., Quantized Majorana pump in semiconductor-superconductor heterostructures
Phys. Rev. B 103, 195407 (2021) [Crossref] -
Jin et al., Master equation approach for transport through Majorana zero modes
New J. Phys. 24, 093009 (2022) [Crossref] -
Sahu et al., Effect of topological length on bound state signatures in a topological nanowire
Phys. Rev. B 108, 205426 (2023) [Crossref] -
He et al., Nonequilibrium interplay between Andreev bound states and Kondo effect
Phys. Rev. B 102, 075121 (2020) [Crossref] -
Lin et al., Non-Abelian operation through scattering between chiral Dirac edge modes
Phys. Rev. B 105, 205428 (2022) [Crossref] -
Aksenov, Features of the Response of Majorana Quasiparticles in Superconducting Wires (Brief Review)
Jetp Lett. 120, 56 (2024) [Crossref] -
Chen et al., Non-Abelian statistics of Majorana zero modes in the presence of an Andreev bound state
Phys. Rev. B 105, 054507 (2022) [Crossref] -
Saldaña et al., Richardson model with complex level structure and spin-orbit coupling for hybrid superconducting islands: Stepwise suppression of pairing and magnetic pinning
Phys. Rev. B 108, 224507 (2023) [Crossref] -
Gruñeiro et al., Transport features of a topological superconducting nanowire with a quantum dot: Conductance and noise
Phys. Rev. B 108, 045418 (2023) [Crossref] -
Liu et al., Josephson current via an isolated Majorana zero mode
Phys. Rev. B 103, 014510 (2021) [Crossref] -
Hao et al., Anomalous universal conductance as a hallmark of non-locality in a Majorana-hosted superconducting island
Nat Commun 13, 6699 (2022) [Crossref] -
Traverso et al., Effects of the Vertices on the Topological Bound States in a Quasicrystalline Topological Insulator
Symmetry 14, 1736 (2022) [Crossref] -
Das Sarma et al., Disorder-induced zero-bias peaks in Majorana nanowires
Phys. Rev. B 103, 195158 (2021) [Crossref] -
Aksenov, Probing Majorana bound states through an inhomogeneous Andreev double dot interferometer
Phys. Rev. B 107, 085417 (2023) [Crossref] -
Pan et al., Crossover between trivial zero modes in Majorana nanowires
Phys. Rev. B 104, 054510 (2021) [Crossref] -
Liu et al., Universal Conductance Scaling of Andreev Reflections Using a Dissipative Probe
Phys. Rev. Lett. 128, 076802 (2022) [Crossref] -
Taranko et al., Transient effects in quantum dots contacted via topological superconductor
Phys. Rev. B 110, 035413 (2024) [Crossref] -
Feng et al., Distinguishing Majorana and Andreev bound states in a topological superconducting nanowire with a potential barrier
Physica E: Low-dimensional Systems and Nanostructures 141, 115247 115247 (2022) [Crossref] -
Cao et al., Differential current noise as an identifier of Andreev bound states that induce nearly quantized conductance plateaus
Phys. Rev. B 108, L121407 (2023) [Crossref] -
Zeng et al., Feasibility of measurement-based braiding in the quasi-Majorana regime of semiconductor-superconductor heterostructures
Phys. Rev. B 102, 205101 (2020) [Crossref] -
Valentini et al., Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states
Science 373, 82 (2021) [Crossref] -
Dmytruk et al., Hybrid light-matter states in topological superconductors coupled to cavity photons
Phys. Rev. B 110, 075416 (2024) [Crossref] -
Boutin et al., Topological Josephson bifurcation amplifier: Semiclassical theory
129, 214302 (2021) [Crossref] -
Schuray et al., Signatures of the Majorana spin in electrical transport through a Majorana nanowire
Phys. Rev. B 102, 045303 (2020) [Crossref] -
Minissale et al., Sequencing one-dimensional Majorana materials for topological quantum computing
J. Phys. Mater. 7, 031001 (2024) [Crossref] -
Dai et al., Interaction induced modifications of the fractional Josephson effect
Solid State Communications 343, 114631 114631 (2022) [Crossref] -
Tsintzis et al., Creating and detecting poor man's Majorana bound states in interacting quantum dots
Phys. Rev. B 106, L201404 (2022) [Crossref] -
Miles et al., Kitaev chain in an alternating quantum dot-Andreev bound state array
Phys. Rev. B 110, 024520 (2024) [Crossref] -
Mishmash et al., Dephasing and leakage dynamics of noisy Majorana-based qubits: Topological versus Andreev
Phys. Rev. B 101, 075404 (2020) [Crossref] -
Sharma et al., Challenges in detecting topological superconducting transitions via supercurrent and phase probes in planar Josephson junctions
Phys. Rev. B 109, 054515 (2024) [Crossref] -
Souto et al., Multiterminal transport spectroscopy of subgap states in Coulomb-blockaded superconductors
Phys. Rev. B 106, 235425 (2022) [Crossref] -
Prada et al., From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires
Nat Rev Phys 2, 575 (2020) [Crossref] -
Sticlet et al., All-electrical spectroscopy of topological phases in semiconductor-superconductor heterostructures
Phys. Rev. B 102, 075437 (2020) [Crossref] -
Tanaka et al., Theory of Majorana Zero Modes in Unconventional Superconductors
2024, 08C105 (2024) [Crossref] -
Ghosh et al., Majorana zero-modes in a dissipative Rashba nanowire
SciPost Phys. 17, 036 (2024) [Crossref] -
Dourado et al., Nonlocality of local Andreev conductances as a probe for topological Majorana wires
Phys. Rev. B 110, 014504 (2024) [Crossref] -
Nitsch et al., Transport-based fusion that distinguishes between Majorana and Andreev bound states
Phys. Rev. B 109, 165404 (2024) [Crossref] -
Cao et al., Recent progress on Majorana in semiconductor-superconductor heterostructures—engineering and detection
Sci. China Phys. Mech. Astron. 66, 267003 (2023) [Crossref] -
Liu et al., Topological Kondo device for distinguishing quasi-Majorana and Majorana signatures
Phys. Rev. B 104, 205125 (2021) [Crossref] -
Song et al., Large zero bias peaks and dips in a four-terminal thin InAs-Al nanowire device
Phys. Rev. Research 4, 033235 (2022) [Crossref] -
Hess et al., Prevalence of trivial zero-energy subgap states in nonuniform helical spin chains on the surface of superconductors
Phys. Rev. B 106, 104503 (2022) [Crossref] -
Wang et al., Parametric exploration of zero-energy modes in three-terminal InSb-Al nanowire devices
Phys. Rev. B 106, 075306 (2022) [Crossref] -
Baldo et al., Zero-frequency supercurrent susceptibility signatures of trivial and topological zero-energy states in nanowire junctions
Supercond. Sci. Technol. 36, 034003 (2023) [Crossref] -
Pan et al.,
In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices
Chinese Phys. Lett. 39, 058101 (2022) [Crossref] -
Hess et al., Trivial Andreev Band Mimicking Topological Bulk Gap Reopening in the Nonlocal Conductance of Long Rashba Nanowires
Phys. Rev. Lett. 130, 207001 (2023) [Crossref] -
Sakurai et al., Nodal Andreev spectra in multi-Majorana three-terminal Josephson junctions
Phys. Rev. B 101, 174506 (2020) [Crossref] -
Kurilovich et al., Quantum critical dynamics of a Josephson junction at the topological transition
Phys. Rev. B 104, 014509 (2021) [Crossref] -
Ricco et al., Topological isoconductance signatures in Majorana nanowires
Sci Rep 11, 17310 (2021) [Crossref] -
Chen et al., Carbon nanotube resonator enhancement of Majorana fermions induced slow light in a hybrid semiconductor/superconductor device
Jpn. J. Appl. Phys. 61, 082001 (2022) [Crossref] -
Heedt et al., Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices
Nat Commun 12, 4914 (2021) [Crossref] -
Muralidharan et al., Emerging quantum hybrid systems for non-Abelian-state manipulation
Front. Nanotechnol. 5, 1219975 (2023) [Crossref] -
Payá et al., Phenomenology of Majorana zero modes in full-shell hybrid nanowires
Phys. Rev. B 109, 115428 (2024) [Crossref] -
Ricco et al., Reshaping the Jaynes-Cummings ladder with Majorana bound states
Phys. Rev. A 106, 023702 (2022) [Crossref] -
Fu et al., Waiting time distributions of the electron transport in a quantum dot coupled to a Majorana bound state
Physica E: Low-dimensional Systems and Nanostructures 146, 115515 115515 (2023) [Crossref] -
Perrin et al., Identifying Majorana bound states by tunneling shot-noise tomography
Phys. Rev. B 104, L121406 (2021) [Crossref] -
Ricco et al., Accessing the degree of Majorana nonlocality in a quantum dot-optical microcavity system
Sci Rep 12, 1983 (2022) [Crossref] -
Cao et al., Numerical study of PbTe-Pb hybrid nanowires for engineering Majorana zero modes
Phys. Rev. B 105, 085424 (2022) [Crossref] -
Sugeta et al., Enhanced 2π-periodic Aharonov–Bohm Effect as a Signature of Majorana Zero Modes Probed by Nonlocal Measurements
J. Phys. Soc. Jpn. 92, 054701 (2023) [Crossref] -
Pan et al., Generic quantized zero-bias conductance peaks in superconductor-semiconductor hybrid structures
Phys. Rev. B 101, 024506 (2020) [Crossref] -
Mao et al., Charge and spin transport through a normal lead coupled to an
s
-wave superconductor and a Majorana zero mode
Phys. Rev. B 103, 115411 (2021) [Crossref] -
Chen et al., Electrostatic environment and Majorana bound states in full-shell topological insulator nanowires
Phys. Rev. B 109, 075408 (2024) [Crossref] -
Manousakis et al., Weak Measurement Protocols for Majorana Bound State Identification
Phys. Rev. Lett. 124, 096801 (2020) [Crossref] -
Steffensen et al., Trapping Majorana zero modes in vortices of magnetic texture crystals coupled to nodal superconductors
Phys. Rev. B 104, 174502 (2021) [Crossref] -
Aksenov, Manifestation of Majorana modes overlap in the Aharonov–Bohm effect
J. Phys.: Condens. Matter 34, 255301 (2022) [Crossref] -
Tinyukova et al., The Role of Majorana-Like Bound States in the Andreev Reflection and the Josephson Effect in the Case of a Topological Insulator
Theor Math Phys 202, 72 (2020) [Crossref] -
Yazdani et al., Hunting for Majoranas
Science 380, eade0850 (2023) [Crossref] -
Banerjee et al., Signatures of a topological phase transition in a planar Josephson junction
Phys. Rev. B 107, 245304 (2023) [Crossref] -
Leumer et al., Linear and nonlinear transport across a finite Kitaev chain: An exact analytical study
Phys. Rev. B 103, 165432 (2021) [Crossref] -
Vaitiekėnas et al., Flux-induced topological superconductivity in full-shell nanowires
Science 367, eaav3392 (2020) [Crossref] -
Pekerten et al., Fermion parity switches of the ground state of Majorana billiards
Phys. Rev. B 100, 235455 (2019) [Crossref] -
Lesser et al., Josephson junction arrays as a platform for topological phases of matter
Phys. Rev. B 109, 144519 (2024) [Crossref] -
Cao et al., Probing electron-hole weights of an Andreev bound state by transient currents
Phys. Rev. B 106, 075416 (2022) [Crossref] -
Lai et al., Theory of Coulomb blockaded transport in realistic Majorana nanowires
Phys. Rev. B 104, 085403 (2021) [Crossref] -
Barman Ray et al., Symmetry-breaking signatures of multiple Majorana zero modes in one-dimensional spin-triplet superconductors
Phys. Rev. B 104, 104513 (2021) [Crossref] -
Becerra et al., Quantized Spin Pumping in Topological Ferromagnetic-Superconducting Nanowires
Phys. Rev. Lett. 130, 237002 (2023) [Crossref] -
Vaitiekėnas et al., Zero-bias peaks at zero magnetic field in ferromagnetic hybrid nanowires
Nat. Phys. 17, 43 (2021) [Crossref] -
Wang et al., Large Andreev bound state zero-bias peaks in a weakly dissipative environment
Phys. Rev. B 106, 205421 (2022) [Crossref] -
Luethi et al., Majorana bound states in germanium Josephson junctions via phase control
Phys. Rev. B 108, 195406 (2023) [Crossref] -
Bittermann et al., Probing Majorana bound states via a
pn
junction containing a quantum dot
Phys. Rev. B 106, 075305 (2022) [Crossref] -
Samuelson et al., Minimal quantum dot based Kitaev chain with only local superconducting proximity effect
Phys. Rev. B 109, 035415 (2024) [Crossref] -
Tian et al., Distinguishing Majorana and quasi-Majorana bound states in a hybrid superconductor-semiconductor nanowire with inhomogeneous potential barriers
Results in Physics 26, 104273 104273 (2021) [Crossref] -
Gao 高 et al., Hard Superconducting Gap in PbTe Nanowires
Chinese Phys. Lett. 41, 038502 (2024) [Crossref] -
Buccheri et al., Violation of the Wiedemann-Franz law in the topological Kondo model
Phys. Rev. B 105, L081403 (2022) [Crossref] -
Seoane Souto et al., Fusion rules in a Majorana single-charge transistor
SciPost Phys. 12, 161 (2022) [Crossref] -
Sau et al.,
108, 125 (2021) [Crossref] -
Okuma et al., Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems
Phys. Rev. B 103, 085428 (2021) [Crossref] -
Frolov et al., Topological superconductivity in hybrid devices
Nat. Phys. 16, 718 (2020) [Crossref] -
Chiburin et al., Mutual transition of Andreev and Majorana bound states in a superconducting gap
Theor Math Phys 205, 1666 (2020) [Crossref] -
Thamm et al., Conductance based machine learning of optimal gate voltages for disordered Majorana wires
Phys. Rev. B 109, 045132 (2024) [Crossref] -
Manna et al., Signature of a pair of Majorana zero modes in superconducting gold surface states
Proc. Natl. Acad. Sci. U.S.A. 117, 8775 (2020) [Crossref] -
Wang et al., Plateau Regions for Zero-Bias Peaks within 5% of the Quantized Conductance Value
2e2/h
Phys. Rev. Lett. 129, 167702 (2022) [Crossref] -
Bai et al., Probing the non-Abelian fusion of a pair of Majorana zero modes
Phys. Rev. B 109, 085403 (2024) [Crossref] -
Yu et al., Non-Majorana states yield nearly quantized conductance in proximatized nanowires
Nat. Phys. 17, 482 (2021) [Crossref]
Authors / Affiliation: mappings to Contributors and Organizations
See all Organizations.- 1 Adriaan Vuik,
- 1 Bas Nijholt,
- 1 Anton R. Akhmerov,
- 1 Michael Wimmer