Jet diffusion versus JetGPT – Modern networks for the LHC
Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson, Jonas Spinner
SciPost Phys. Core 8, 026 (2025) · published 3 March 2025
- doi: 10.21468/SciPostPhysCore.8.1.026
- Submissions/Reports
-
Abstract
We introduce two diffusion models and an autoregressive transformer for LHC physics simulations. Bayesian versions allow us to control the networks and capture training uncertainties. After illustrating their different density estimation methods for simple toy models, we discuss their advantages for Z plus jets event generation. While diffusion networks excel through their precision, the transformer scales best with the phase space dimensionality. Given the different training and evaluation speed, we expect LHC physics to benefit from dedicated use cases for normalizing flows, diffusion models, and autoregressive transformers.
Cited by 2

Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 3 4 5 6 Anja Butter,
- 1 Nathan Huetsch,
- 1 Sofia Palacios Schweitzer,
- 1 Tilman Plehn,
- 1 Peter Sorrenson,
- 1 Jonas Spinner
- 1 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 2 Centre National de la Recherche Scientifique / French National Centre for Scientific Research [CNRS]
- 3 Sorbonne Université / Sorbonne University
- 4 Institut National de Physique Nucléaire et de Physique des Particules [IN2P3]
- 5 Université de Paris / University of Paris
- 6 Laboratoire de Physique Nucléaire et de Hautes Énergies / Laboratoire de Physique Nucléaire et de Hautes Énergies [LPNHE]