Advancing tools for simulation-based inference
Henning Bahl, Victor Bresó-Pla, Giovanni De Crescenzo, Tilman Plehn
SciPost Phys. Core 8, 060 (2025) · published 29 September 2025
- doi: 10.21468/SciPostPhysCore.8.3.060
- Submissions/Reports
-
Abstract
We study the benefit of modern simulation-based inference to constrain particle interactions at the LHC. We explore ways to incorporate known physics structures into likelihood estimation, specifically morphing-aware estimation and derivative learning. Technically, we introduce a new and more efficient smearing algorithm, illustrate how uncertainties can be approximated through repulsive ensembles, and show how equivariant networks can improve likelihood estimation. After illustrating these aspects for a toy model, we target di-boson production at the LHC and find that our improvements significantly increase numerical control and stability.
Cited by 2
Authors / Affiliation: mappings to Contributors and Organizations
See all Organizations.- 1 Henning Bahl,
- 1 Víctor Bresó-Pla,
- 1 Giovanni De Crescenzo,
- 1 Tilman Plehn
- Alexander von Humboldt-Stiftung / Alexander von Humboldt Foundation
- Baden-Württemberg Stiftung
- Bundesministerium für Bildung und Forschung / Federal Ministry of Education and Research [BMBF]
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- Generalitat Valenciana
- Ministerio de Ciencia, Innovación y Universidades / Ministry of Science, Innovation and Universities
- NextGenerationEU
