Accurate surrogate amplitudes with calibrated uncertainties
Henning Bahl, Nina Elmer, Luigi Favaro, Manuel Haußmann, Tilman Plehn, Ramon Winterhalder
SciPost Phys. Core 8, 073 (2025) · published 24 October 2025
- doi: 10.21468/SciPostPhysCore.8.4.073
- Submissions/Reports
-
Abstract
Neural networks for LHC physics have to be accurate, reliable, and controlled. Using neural surrogates for the prediction of loop amplitudes as a use case, we first show how activation functions are systematically tested with Kolmogorov-Arnold Networks. Then, we train neural surrogates to simultaneously predict the target amplitude and an uncertainty for the prediction. We disentangle systematic uncertainties, learned by a well-defined likelihood loss, from statistical uncertainties, which require the introduction of Bayesian neural networks or repulsive ensembles. We test the coverage of the learned uncertainties using pull distributions to quantify the calibration of cutting-edge neural surrogates.
Supplementary Information
External links to supplemental resources; opens in a new tab.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Henning Bahl,
- 1 Nina Elmer,
- 1 2 Luigi Favaro,
- 3 Manuel Haussmann,
- 1 Tilman Plehn,
- 4 5 Ramon Winterhalder
- 1 Ruprecht-Karls-Universität Heidelberg / Heidelberg University
- 2 Université catholique de Louvain [UCL]
- 3 Syddansk Universitet / University of Southern Denmark [SDU]
- 4 Università degli Studi di Milano / University of Milan [UNIMI]
- 5 Istituto Nazionale di Fisica Nucleare Sezione di Milano / INFN Sezione di Milano
- Baden-Württemberg Stiftung
- Bundesministerium für Bildung und Forschung / Federal Ministry of Education and Research [BMBF]
- Deutsche Forschungsgemeinschaft / German Research FoundationDeutsche Forschungsgemeinschaft [DFG]
- Fonds De La Recherche Scientifique - FNRS (FNRS) (through Organization: Fonds National de la Recherche Scientifique [FNRS])
- Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (through Organization: Ministero dell'Istruzione, dell'Università e della Ricerca / Ministry of Education, Universities and Research [MIUR])
- Universität Heidelberg
