Tensorization of neural networks for improved privacy and interpretability
José Ramón Pareja Monturiol, Alejandro Pozas-Kerstjens, David Pérez-García
SciPost Phys. Core 8, 095 (2025) · published 24 December 2025
- doi: 10.21468/SciPostPhysCore.8.4.095
- Submissions/Reports
-
Abstract
We present a tensorization algorithm for constructing tensor train/matrix product state (MPS) representations of functions, drawing on sketching and cross interpolation ideas. The method only requires black-box access to the target function and a small set of sample points defining the domain of interest. Thus, it is particularly well-suited for machine learning models, where the domain of interest is naturally defined by the training dataset. We show that this approach can be used to enhance the privacy and interpretability of neural network models. Specifically, we apply our decomposition to (i) obfuscate neural networks whose parameters encode patterns tied to the training data distribution, and (ii) estimate topological phases of matter that are easily accessible from the MPS representation. Additionally, we show that this tensorization can serve as an efficient initialization method for optimizing MPS in general settings, and that, for model compression, our algorithm achieves a superior trade-off between memory and time complexity compared to conventional tensorization methods of neural networks.
Supplementary Information
External links to supplemental resources; opens in a new tab.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 José Ramón Pareja Monturiol,
- 3 Alejandro Pozas-Kerstjens,
- 1 2 David Pérez-García
- 1 Universidad Complutense de Madrid / Complutense University of Madrid
- 2 Instituto de Ciencias Matemáticas / Institute of Mathematical Sciences [ICMAT]
- 3 Université de Genève / University of Geneva [UNIGE]
- Comunidad de Madrid
- Consejo Superior de Investigaciones Científicas / Spanish National Research Council [CSIC]
- Innovation, Science and Economic Development Canada
- Institut Périmètre de physique théorique / Perimeter Institute [PI]
- Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España
- Ministerio de Ciencia e Innovación (through Organization: Ministerio de Ciencia, Innovación y Universidades / Ministry of Science, Innovation and Universities)
- Ministry of Colleges and Universities
- NextGenerationEU
- Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung / Swiss National Science Foundation [SNF]
- Universidad Complutense de Madrid / Complutense University of Madrid
