SciPost Phys. 18, 122 (2025) ·
published 9 April 2025
|
· pdf
The emptiness formation problem is addressed for a one-dimensional quantum polytropic gas characterized by an arbitrary polytropic index $\gamma$, which defines the equation of state $P \sim \rho^\gamma$, where $P$ is the pressure and $\rho$ is the density. The problem involves determining the probability of the spontaneous formation of an empty interval in the ground state of the gas. In the limit of a macroscopically large interval, this probability is dominated by an instanton configuration. By solving the hydrodynamic equations in imaginary time, we derive the analytic form of the emptiness instanton. This solution is expressed as an integral representation analogous to those used for correlation functions in Conformal Field Theory. Prominent features of the spatiotemporal profile of the instanton are obtained directly from this representation.
Gustavo Machado Monteiro, Alexander G. Abanov, Sriram Ganeshan
SciPost Phys. 14, 103 (2023) ·
published 10 May 2023
|
· pdf
Isotropic fluids in two spatial dimensions can break parity symmetry and sustain transverse stresses which do not lead to dissipation. Corresponding transport coefficients include odd viscosity, odd torque, and odd pressure. We consider an isotropic Galilean invariant fluid dynamics in the adiabatic regime with momentum and particle density conservation. We find conditions on transport coefficients that correspond to dissipationless and separately to Hamiltonian fluid dynamics. The restriction on the transport coefficients will help identify what kind of hydrodynamics can be obtained by coarse-graining a microscopic Hamiltonian system. Interestingly, not all parity-breaking transport coefficients lead to energy conservation and, generally, the fluid dynamics is energy conserving but not Hamiltonian. We show how this dynamics can be realized by imposing a nonholonomic constraint on the Hamiltonian system.
SciPost Phys. 5, 010 (2018) ·
published 27 July 2018
|
· pdf
We consider free surface dynamics of a two-dimensional incompressible fluid with odd viscosity. The odd viscosity is a peculiar part of the viscosity tensor which does not result in dissipation and is allowed when parity symmetry is broken. For the case of incompressible fluids, the odd viscosity manifests itself through the free surface (no stress) boundary conditions. We first find the free surface wave solutions of hydrodynamics in the linear approximation and study the dispersion of such waves. As expected, the surface waves are chiral and even exist in the absence of gravity and vanishing shear viscosity. In this limit, we derive effective nonlinear Hamiltonian equations for the surface dynamics, generalizing the linear solutions to the weakly nonlinear case. Within the small surface angle approximation, the equation of motion leads to a new class of non-linear chiral dynamics governed by what we dub the {\it chiral} Burgers equation. The chiral Burgers equation is identical to the complex Burgers equation with imaginary viscosity and an additional analyticity requirement that enforces chirality. We present several exact solutions of the chiral Burgers equation. For generic multiple pole initial conditions, the system evolves to the formation of singularities in a finite time similar to the case of an ideal fluid without odd viscosity. We also obtain a periodic solution to the chiral Burgers corresponding to the non-linear generalization of small amplitude linear waves.