Steef Smit, Kourosh L. Shirkoohi, Saumya Mukherjee, Sergio Barquero Pierantoni, Lewis Bawden, Erik van Heumen, Arnaud P. N. Tchiomo, Jans Henke, Jasper van Wezel, Yingkai Huang, Takeshi Kondo, Tsunehiro Takeuchi, Timur K. Kim, Cephise Cacho, Marta Zonno, Sergey Gorovikov, Stephen B. Dugdale, Jorge I. Facio, Mariia Roslova, Laura Folkers, Anna Isaeva, Nigel E. Hussey, Mark S. Golden
SciPost Phys. 18, 191 (2025) ·
published 17 June 2025
|
· pdf
High-resolution angle-resolved photoemission spectroscopy (ARPES) performed on the single-layered cuprate (Pb$_{1-y}$,Bi$_y$)$_2$Sr$_{2-x}$La$_x$CuO$_{6+\delta}$ (Bi2201) reveals a 6-10% difference in the nodal $k_F$ vectors along the $\Gamma$Y and $\Gamma$X directions. This asymmetry is notably larger than the 2% orthorhombic distortion in the CuO$_2$ plane lattice constants determined using X-ray crystallography from the same samples. First principles calculations indicate that crystal-field splitting of the bands lies at the root of the $k_{F}$ asymmetry. Concomitantly, the nodal Fermi velocities for the $\Gamma$Y quadrant exceed those for $\Gamma$X by 4%. Momentum distribution curve widths for the two nodal dispersions are also anisotropic, showing identical energy dependencies, bar a scaling factor of $\sim$ 1.17$± 0.05$ between $\Gamma$Y and $\Gamma$X. Consequently, the imaginary part of the self-energy is found to be 10-20% greater along $\Gamma$Y than $\Gamma$X. These results emphasize the need to account for Fermi surface asymmetry in the analysis of ARPES data on Bi-based cuprate high temperature superconductors such as Bi2201. To illustrate this point, an orthorhombic tight-binding model (with twofold in-plane symmetry) was used to fit ARPES Fermi surface maps spanning all four quadrants of the Brillouin zone, and the ARPES-derived hole-doping (Luttinger count) was extracted. Comparison of the Luttinger count with one assuming four-fold in-plane symmetry strongly suggests the marked spread in previously-reported Fermi surface areas from ARPES on Bi2201 results from the differences in $k_F$ along $\Gamma$Y and $\Gamma$X. Using this analysis, a new, linear relationship emerges between the hole-doping derived from ARPES ($p_{\text{ARPES}}$) and that derived using the Presland ($p_{\text{Presland}}$) relation such that $p_{\text{ARPES}} = p_{\text{Presland}}+0.11$. The implications for this difference between the ARPES- and Presland-derived estimates for $p$ are discussed and possible future directions to elucidate the origin of this discrepancy are presented.
Jorge I. Facio, Elisabetta Nocerino, Ion Cosma Fulga, Rafal Wawrzynczak, Joanna Brown, Genda Gu, Qiang Li, Martin Mansson, Yasmine Sassa, Oleh Ivashko, Martin v. Zimmermann, Felix Mende, Johannes Gooth, Stanislaw Galeski, Jeroen van den Brink, Tobias Meng
SciPost Phys. 14, 066 (2023) ·
published 11 April 2023
|
· pdf
Real-world topological semimetals typically exhibit Dirac and Weyl nodes that coexist with trivial Fermi pockets. This tends to mask the physics of the relativistic quasiparticles. Using the example of ZrTe$_5$, we show that strain provides a powerful tool for in-situ tuning of the band structure such that all trivial pockets are pushed far away from the Fermi energy, but only for a certain range of Van der Waals gaps. Our results naturally reconcile contradicting reports on the presence or absence of additional pockets in ZrTe$_5$, and provide a clear map of where to find a pure three-dimensional Dirac semimetallic phase in the structural parameter space of the material.