Carolin Wille, Maksimilian Usoltcev, Jens Eisert, Alexander Altland
SciPost Phys. 18, 196 (2025) ·
published 19 June 2025
|
· pdf
This work proposes a minimal model extending the duality between classical statistical spin systems and fermionic systems beyond the case of free fermions. A Jordan-Wigner transformation applied to a two-dimensional tensor network maps the partition sum of a classical statistical mechanics model to a Grassmann variable integral, structurally similar to the path integral for interacting fermions in two dimensions. The resulting model is simple, featuring only two parameters: one governing spin-spin interaction (dual to effective hopping strength in the fermionic picture), the other measuring the deviation from the free fermion limit. Nevertheless, it exhibits a rich phase diagram, partially stabilized by elements of topology, and featuring three phases meeting at a multicritical point. Besides the interpretation as a spin and fermionic system, the model is closely related to loop gas and vertex models and can be interpreted as a parity-preserving (non-unitary) circuit. Its minimal construction makes it an ideal reference system for studying non-linearities in tensor networks and deriving results by means of duality.
SciPost Phys. Core 5, 038 (2022) ·
published 25 July 2022
|
· pdf
We introduce a systematic mathematical language for describing fixed point models and apply it to the study to topological phases of matter. The framework established is reminiscent to that of state-sum models and lattice topological quantum field theories, but is formalized and unified in terms of tensor networks. In contrast to existing tensor network ansatzes for the study of ground states of topologically ordered phases, the tensor networks in our formalism directly represent discrete path integrals in Euclidean space-time. This language is more immediately related to the Hamiltonian defining the model than other approaches, via a Trotterization of the respective imaginary time evolution. We illustrate our formalism at hand of simple examples, and demonstrate its full power by expressing known families of models in 2+1 dimensions in their most general form, namely string-net models and Kitaev quantum doubles based on weak Hopf algebras. To elucidate the versatility of our formalism, we also show how fermionic phases of matter can be described and provide a framework for topological fixed point models in 3+1 dimensions.