G. M. Koutentakis, S. I. Mistakidis, F. Grusdt, H. R. Sadeghpour, P. Schmelcher
SciPost Phys. 19, 093 (2025) ·
published 13 October 2025
|
· pdf
We theoretically investigate the stationary properties of a spin-1/2 impurity immersed in a one-dimensional confined Bose gas. In particular, we consider coherently coupled spin states with an external field, where only one spin component interacts with the bath, enabling light dressing of the impurity and spin-dependent bath-impurity interactions. Through detailed comparisons with ab-initio many-body simulations, we demonstrate that the composite system is accurately described by a simplified effective Hamiltonian. The latter builds upon previously developed effective potential approaches in the absence of light dressing. It can be used to extract the impurity energy, residue, effective mass, and anharmonicity induced by the phononic dressing. Light-dressing is shown to increase the polaron residue, undressing the impurity from phononic excitations because of strong spin coupling. For strong repulsions, previously shown to trigger dynamical Bose polaron decay (a phenomenon called temporal orthogonality catastrophe), it is explained that strong light-dressing stabilizes a repulsive polaron-dressed state. Our results establish the effective Hamiltonian framework as a powerful tool for exploring strongly interacting polaronic systems and corroborating forthcoming experimental realizations.
Friethjof Theel, Simeon I. Mistakidis, Peter Schmelcher
SciPost Phys. 16, 023 (2024) ·
published 23 January 2024
|
· pdf
We study the impact of induced correlations and quasiparticle properties by immersing two distinguishable impurities in a harmonically trapped bosonic medium. It is found that when the impurities couple both either repulsively or attractively to their host, the latter mediates a two-body correlated behavior between them. In the reverse case, namely the impurities interact oppositely with the host, they feature anti-bunching. Monitoring the impurities relative distance and constructing an effective two-body model to be compared with the full many-body calculations, we are able to associate the induced (anti-) correlated behavior of the impurities with the presence of attractive (repulsive) induced interactions. Furthermore, we capture the formation of a bipolaron and a trimer state in the strongly attractive regime. The trimer refers to the correlated behavior of two impurities and a representative atom of the bosonic medium and it is characterized by an ellipsoidal shape of the three-body correlation function. Our results open the way for controlling polaron induced correlations and creating relevant bound states.