Oleksandr V. Marchukov, Andrea Trombettoni, Giuseppe Mussardo, Maxim Olshanii
SciPost Phys. Core 8, 074 (2025) ·
published 28 October 2025
|
· pdf
The famous Goldbach conjecture states that any even natural number $N$ greater than $2$ can be written as the sum of two prime numbers $p^{\text{(I)}}$ and $p^{\text{(II)}}$. In this article we propose a quantum analogue device that solves the following problem: given a small prime $p^{\text{(I)}}$, identify a member $N$ of a $\mathcal{N}$-strong set even numbers for which $N-p^{\text{(I)}}$ is also a prime. A table of suitable large primes $p^{\text{(II)}}$ is assumed to be known a priori. The device realizes the Grover quantum search protocol and as such ensures a $\sqrt{\mathcal{N}}$ quantum advantage. Our numerical example involves a set of 51 even numbers just above the highest even classical-numerically explored so far [T. O. e Silva, S. Herzog, and S. Pardi, Mathematics of Computation 83, 2033 (2013)]. For a given small prime number $p^{\text{(I)}}=223$, it took our quantum algorithm 5 steps to identify the number $N=4× 10^{18}+14$ as featuring a Goldbach partition involving $223$ and another prime, namely $p^{\text{(II)}}=4× 10^{18}-239$. Currently, our algorithm limits the number of evens to be tested simultaneously to $\mathcal{N} \sim \ln(N)$: larger samples will typically contain more than one even that can be partitioned with the help of a given $p^{\text{(I)}}$, thus leading to a departure from the Grover paradigm.
Francesco Andreucci, Stefano Lepri, Stefano Ruffo, Andrea Trombettoni
SciPost Phys. Core 5, 036 (2022) ·
published 15 July 2022
|
· pdf
We study the nonequilibrium steady-state of a fully-coupled network of $N$ quantum harmonic oscillators, interacting with two thermal reservoirs. Given the long-range nature of the couplings, we consider two setups: one in which the number of particles coupled to the baths is fixed (intensive coupling) and one in which it is proportional to the size $N$ (extensive coupling). In both cases, we compute analytically the heat fluxes and the kinetic temperature distributions using the nonequilibrium Green's function approach, both in the classical and quantum regimes. In the large $N$ limit, we derive the asymptotic expressions of both quantities as a function of $N$ and the temperature difference between the baths. We discuss a peculiar feature of the model, namely that the bulk temperature vanishes in the thermodynamic limit, due to a decoupling of the dynamics of the inner part of the system from the baths. At variance with usual cases, this implies that the steady state depends on the initial state of the particles in the bulk. We also show that quantum effects are relevant only below a characteristic temperature that vanishes as $1/N$. In the quantum low-temperature regime the energy flux is proportional to the universal quantum of thermal conductance.