Guillermo Arias-Tamargo, Chris Hull, Maxwell L. Velásquez Cotini Hutt
SciPost Phys. 19, 126 (2025) ·
published 11 November 2025
|
· pdf
Global symmetries can be generalised to transformations generated by topological operators, including cases in which the topological operator does not have an inverse. A family of such topological operators are intimately related to dualities via the procedure of half-space gauging. In this work we discuss the construction of non-invertible defects based on T-duality in two dimensions, generalising the well-known case of the free compact boson to any Non-Linear Sigma Model with Wess-Zumino term which is T-dualisable. This requires that the target space has an isometry with compact orbits that acts without fixed points. Our approach allows us to include target spaces without non-trivial 1-cycles, does not require the NLSM to be conformal, and when it is conformal it does not need to be rational; moreover, it highlights the microscopic origin of the topological terms that are responsible for the non-invertibility of the defect. An interesting class of examples are Wess-Zumino-Witten models, which are self-dual under a discrete gauging of a subgroup of the isometry symmetry and so host a topological defect line with Tambara-Yamagami fusion. Along the way, we discuss how the usual 0-form symmetries match across T-dual models in target spaces without 1-cycles, and how global obstructions can prevent locally conserved currents from giving rise to topological operators.
SciPost Phys. Lect. Notes 64 (2022) ·
published 26 October 2022
|
· pdf
Superconformal field theory with $\mathcal{N}=2$ supersymmetry in four dimensional spacetime provides a prime playground to study strongly coupled phenomena in quantum field theory. Its rigid structure ensures valuable analytic control over non-perturbative effects, yet the theory is still flexible enough to incorporate a large landscape of quantum systems. Here we aim to offer a guidebook to fundamental features of the 4d $\mathcal{N}=2$ superconformal field theories and basic tools to construct them in string/M-/F-theory. The content is based on a series of lectures at the Quantum Field Theories and Geometry School (https://sites.google.com/view/qftandgeometrysummerschool/home) in July 2020.
Guillermo Arias-Tamargo, Antoine Bourget, Alessandro Pini
SciPost Phys. 11, 026 (2021) ·
published 9 August 2021
|
· pdf
We analyse the Higgs branch of 4d $\mathcal{N}=2$ SQCD gauge theories with non-connected gauge groups $\widetilde{\mathrm{SU}}(N) = \mathrm{SU}(N) \rtimes_{I,II} \mathbb{Z}_2$ whose study was initiated in arXiv:1804.01108. We derive the Hasse diagrams corresponding to the Higgs mechanism using adapted characters for representations of non-connected groups. We propose 3d $\mathcal{N}=4$ magnetic quivers for the Higgs branches in the type $I$ discrete gauging case, in the form of recently introduced wreathed quivers, and provide extensive checks by means of Coulomb branch Hilbert series computations.