Shuyue Xue, Mohammad Maghrebi, George I. Mias, Carlo Piermarocchi
SciPost Phys. 19, 100 (2025) ·
published 16 October 2025
|
· pdf
We study Hopfield networks with non-reciprocal coupling inducing switches between memory patterns. Dynamical phase transitions occur between phases of no memory retrieval, retrieval of multiple point-attractors, and limit-cycles. The limit cycle phase is bounded by a Hopf bifurcation line and a fold bifurcation line. Autocorrelation scales as $\tilde{C}(\tau/N^\zeta)$, with $\zeta = 1/2$ on the Hopf line and $\zeta = 1/3$ on the fold line. Perturbations of strength $F$ on the Hopf line exhibit response times scaling as $|F|^{-2/3}$, while they induce switches in a controlled way within times scaling as $|F|^{-1/2}$ in the fold line. A Master Equation approach numerically verifies the critical behavior predicted analytically. We discuss how these networks could model biological processes near a critical threshold of cyclic instability evolving through multi-step transitions.
SciPost Phys. 12, 066 (2022) ·
published 17 February 2022
|
· pdf
Fluctuation-dissipation relations (FDRs) and time-reversal symmetry (TRS), two pillars of statistical mechanics, are both broken in generic driven-dissipative systems. These systems rather lead to non-equilibrium steady states far from thermal equilibrium. Driven-dissipative Ising-type models, however, are widely believed to exhibit effective thermal critical behavior near their phase transitions. Contrary to this picture, we show that both the FDR and TRS are broken even macroscopically at, or near, criticality. This is shown by inspecting different observables, both even and odd operators under time-reversal transformation, that overlap with the order parameter. Remarkably, however, a modified form of the FDR as well as TRS still holds, but with drastic consequences for the correlation and response functions as well as the Onsager reciprocity relations. Finally, we find that, at criticality, TRS remains broken even in the weakly-dissipative limit.