SciPost Phys. 19, 155 (2025) ·
published 16 December 2025
|
· pdf
The ATLAS experiment at the Large Hadron Collider explores the use of modern neural networks for a multi-dimensional calibration of its calorimeter signal defined by clusters of topologically connected cells (topo-clusters). The Bayesian neural network (BNN) approach not only yields a continuous and smooth calibration function that improves performance relative to the standard calibration but also provides uncertainties on the calibrated energies for each topo-cluster. The results obtained by using a trained BNN are compared to the standard local hadronic calibration and to a calibration provided by training a deep neural network. The uncertainties predicted by the BNN are interpreted in the context of a fractional contribution to the systematic uncertainties of the trained calibration. They are also compared to uncertainty predictions obtained from an alternative estimator employing repulsive ensembles.
Liam Rankin Sheldon, Dylan Sheldon Rankin, Philip Harris
SciPost Phys. 18, 150 (2025) ·
published 6 May 2025
|
· pdf
The use of machine learning methods in high energy physics typically relies on large volumes of precise simulation for training. As machine learning models become more complex they can become increasingly sensitive to differences between this simulation and the real data collected by experiments. We present a generic methodology based on contrastive learning which is able to greatly mitigate this negative effect. Crucially, the method does not require prior knowledge of the specifics of the mismodeling. While we demonstrate the efficacy of this technique using the task of jet-tagging at the Large Hadron Collider, it is applicable to a wide array of different tasks both in and out of the field of high energy physics.