Saumya Shivam, Curt W. von Keyserlingk, Shivaji L. Sondhi
SciPost Phys. 14, 094 (2023) ·
published 4 May 2023
|
· pdf
Classical shadows are a computationally efficient approach to storing quantum states on a classical computer for the purposes of estimating expectation values of local observables, obtained by performing repeated random measurements. In this note we offer some comments on this approach. We note that the resources needed to form classical shadows with bounded relative error depend strongly on the target state. We then comment on the advantages and limitations of using classical shadows to simulate many-body dynamics. In addition, we introduce the notion of a hybrid shadow, constructed from measurements on a part of the system instead of the entirety, which provides a framework to gain more insight into the nature of shadow states as one reduces the size of the subsystem measured, and a potential alternative to compressing quantum states.
Trithep Devakul, Yizhi You, F. J. Burnell, S. L. Sondhi
SciPost Phys. 6, 007 (2019) ·
published 16 January 2019
|
· pdf
We study spin systems which exhibit symmetries that act on a fractal subset of sites, with fractal structures generated by linear cellular automata. In addition to the trivial symmetric paramagnet and spontaneously symmetry broken phases, we construct additional fractal symmetry protected topological (FSPT) phases via a decorated defect approach. Such phases have edges along which fractal symmetries are realized projectively, leading to a symmetry protected degeneracy along the edge. Isolated excitations above the ground state are symmetry protected fractons, which cannot be moved without breaking the symmetry. In 3D, our construction leads additionally to FSPT phases protected by higher form fractal symmetries and fracton topologically ordered phases enriched by the additional fractal symmetries.