SciPost Phys. 19, 155 (2025) ·
published 16 December 2025
|
· pdf
The ATLAS experiment at the Large Hadron Collider explores the use of modern neural networks for a multi-dimensional calibration of its calorimeter signal defined by clusters of topologically connected cells (topo-clusters). The Bayesian neural network (BNN) approach not only yields a continuous and smooth calibration function that improves performance relative to the standard calibration but also provides uncertainties on the calibrated energies for each topo-cluster. The results obtained by using a trained BNN are compared to the standard local hadronic calibration and to a calibration provided by training a deep neural network. The uncertainties predicted by the BNN are interpreted in the context of a fractional contribution to the systematic uncertainties of the trained calibration. They are also compared to uncertainty predictions obtained from an alternative estimator employing repulsive ensembles.
Wenjing Wang, Mohan Krishnamoorthy, Juliane Muller, Stephen Mrenna, Holger Schulz, Xiangyang Ju, Sven Leyffer, Zachary Marshall
SciPost Phys. Core 5, 001 (2022) ·
published 17 January 2022
|
· pdf
The parameters in Monte Carlo (MC) event generators are tuned on experimental measurements by evaluating the goodness of fit between the data and the MC predictions. The relative importance of each measurement is adjusted manually in an often time-consuming, iterative process to meet different experimental needs. In this work, we introduce several optimization formulations and algorithms with new decision criteria for streamlining and automating this process. These algorithms are designed for two formulations: bilevel optimization and robust optimization. Both formulations are applied to the datasets used in the ATLAS A14 tune and to the dedicated hadronization datasets generated by the Sherpa generator, respectively. The corresponding tuned generator parameters are compared using three metrics. We compare the quality of our automatic tunes to the published ATLAS A14 tune. Moreover, we analyze the impact of a pre-processing step that excludes data that cannot be described by the physics models used in the MC event generators.