SciPost logo

SciPost Submission Page

Achieving quantum advantage in a search for a violations of the Goldbach conjecture, with driven atoms in tailored potentials

by Oleksandr V. Marchukov, Andrea Trombettoni, Giuseppe Mussardo, Maxim Olshanii

This Submission thread is now published as

Submission summary

Authors (as registered SciPost users): Maxim Olshanii
Submission information
Preprint Link: https://arxiv.org/abs/2404.00517v5  (pdf)
Date accepted: Oct. 9, 2025
Date submitted: Sept. 30, 2025, 4:57 a.m.
Submitted by: Maxim Olshanii
Submitted to: SciPost Physics Core
Ontological classification
Academic field: Physics
Specialties:
  • Atomic, Molecular and Optical Physics - Theory
Approach: Theoretical

Abstract

The famous Goldbach conjecture states that any even natural number $N$ greater than $2$ can be written as the sum of two prime numbers $p^{\text{(I)}}$ and $p^{\text{(II)}}$. In this article we propose a quantum analogue device that solves the following problem: given a small prime $p^{\text{(I)}}$, identify a member $N$ of a $\mathcal{N}$-strong set even numbers for which $N-p^{\text{(I)}}$ is also a prime. A table of suitable large primes $p^{\text{(II)}}$ is assumed to be known a priori. The device realizes the Grover quantum search protocol and as such ensures a $\sqrt{\mathcal{N}}$ quantum advantage. Our numerical example involves a set of 51 even numbers just above the highest even classical-numerically explored so far [T. O. e Silva, S. Herzog, and S. Pardi, Mathematics of Computation {\bf 83}, 2033 (2013)]. For a given small prime number $p^{\text{(I)}}=223$, it took our quantum algorithm 5 steps to identify the number $N=4\times 10^{18}+14$ as featuring a Goldbach partition involving $223$ and another prime, namely $p^{\text{(II)}}=4\times 10^{18}-239$. Currently, our algorithm limits the number of evens to be tested simultaneously to $\mathcal{N} \sim \ln(N)$: larger samples will typically contain more than one even that can be partitioned with the help of a given $p^{\text{(I)}}$, thus leading to a departure from the Grover paradigm.

Author comments upon resubmission

Many thanks to the Editorial Board and the Referees. Our manuscript is now unrecognizably better.

List of changes

  • Misprints corrected
  • Section 3 is fully restructured

Published as SciPost Phys. Core 8, 074 (2025)

Login to report or comment