SciPost logo

SciPost Submission Page

Bypassing eigenstate thermalization with experimentally accessible quantum dynamics

by Amit Vikram

Submission summary

Authors (as registered SciPost users): Amit Vikram
Submission information
Preprint Link: scipost_202509_00047v1  (pdf)
Date submitted: Sept. 26, 2025, 4:37 a.m.
Submitted by: Amit Vikram
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Mathematical Physics
  • Quantum Physics
  • Statistical and Soft Matter Physics
Approach: Theoretical

Abstract

Eigenstate thermalization has played a prominent role as a determiner of the validity of quantum statistical mechanics since von Neumann's early works on quantum ergodicity. However, its connection to the dynamical process of quantum thermalization relies sensitively on nondegeneracy properties of the energy spectrum, as well as detailed features of individual eigenstates that are effective only over correspondingly large timescales, rendering it generically inaccessible given practical timescales and finite experimental resources. Here, we introduce the notion of energy-band thermalization to address these limitations, by coarse-graining over energy level spacings with a finite energy resolution. We show that energy-band thermalization implies the thermalization of an observable in almost all states (in any orthonormal basis) over accessible timescales without relying on microscopic properties of the energy eigenvalues or eigenstates, and conversely, can be efficiently accessed in experiments via the dynamics of a single mixed state (for a given observable) with only polynomially many resources in the system size. This allows us to directly determine thermalization, including in the presence of conserved charges, from this state: Most strikingly, if an observable thermalizes in this initial state over a finite range of times, then it must thermalize in almost all physical initial states over all longer timescales. As applications, we derive a finite-time Mazur-Suzuki inequality for quantum transport with approximately conserved charges, and establish the thermalization of local observables over finite timescales in almost all accessible states in (generally inhomogeneous) dual-unitary quantum circuits. We also propose measurement protocols for general many-qubit systems. This work initiates a rigorous treatment of quantum thermalization in terms of experimentally accessible quantities.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment