SciPost Submission Page
TrackFormers Part 2: Enhanced Transformer-Based Models for High-Energy Physics Track Reconstruction
by Sascha Caron, Nadezhda Dobreva, Maarten Kimpel, Uraz Odyurt, Slav Pshenov, Roberto Ruiz de Austri Bazan, Eugene Shalugin, Zef Wolffs, Yue Zhao
Submission summary
| Authors (as registered SciPost users): | Uraz Odyurt · Yue Zhao |
| Submission information | |
|---|---|
| Preprint Link: | scipost_202509_00062v1 (pdf) |
| Date submitted: | Sept. 30, 2025, 5:21 p.m. |
| Submitted by: | Yue Zhao |
| Submitted to: | SciPost Physics Proceedings |
| Proceedings issue: | The 2nd European AI for Fundamental Physics Conference (EuCAIFCon2025) |
| Ontological classification | |
|---|---|
| Academic field: | Physics |
| Specialties: |
|
Abstract
High-Energy Physics experiments are rapidly escalating in generated data volume, a trend that will intensify with the upcoming High-Luminosity LHC upgrade. This surge in data necessitates critical revisions across the data processing pipeline, with particle track reconstruction being a prime candidate for improvement. In our previous work, we introduced "TrackFormers", a collection of Transformer-based one-shot encoder-only models that effectively associate hits with expected tracks. In this study, we extend our earlier efforts by incorporating loss functions that account for inter-hit correlations, conducting detailed investigations into (various) Transformer attention mechanisms, and a study on the reconstruction of higher-level objects. Furthermore we discuss new datasets that allow the training on hit level for a range of physics processes. These developments collectively aim to boost both the accuracy, and potentially the efficiency of our tracking models, offering a robust solution to meet the demands of next-generation high-energy physics experiments.
