Entanglement gap, corners, and symmetry breaking
Vincenzo Alba
SciPost Phys. 10, 056 (2021) · published 8 March 2021
- doi: 10.21468/SciPostPhys.10.3.056
- Submissions/Reports
Abstract
We investigate the finite-size scaling of the lowest entanglement gap $\delta\xi$ in the ordered phase of the two-dimensional quantum spherical model (QSM). The entanglement gap decays as $\delta\xi=\Omega/\sqrt{L\ln(L)}$. This is in contrast with the purely logarithmic behaviour as $\delta\xi=\pi^2/\ln(L)$ at the critical point. The faster decay in the ordered phase reflects the presence of magnetic order. We analytically determine the constant $\Omega$, which depends on the low-energy part of the model dispersion and on the geometry of the bipartition. In particular, we are able to compute the corner contribution to $\Omega$, at least for the case of a square corner.