Fusion and monodromy in the Temperley-Lieb category
Jonathan Belletête, Yvan Saint-Aubin
SciPost Phys. 5, 041 (2018) · published 31 October 2018
- doi: 10.21468/SciPostPhys.5.4.041
- Submissions/Reports
Abstract
Graham and Lehrer (1998) introduced a Temperley-Lieb category $\mathsf{\widetilde{TL}}$ whose objects are the non-negative integers and the morphisms in $\mathsf{Hom}(n,m)$ are the link diagrams from $n$ to $m$ nodes. The Temperley-Lieb algebra $\mathsf{TL}_{n}$ is identified with $\mathsf{Hom}(n,n)$. The category $\mathsf{\widetilde{TL}}$ is shown to be monoidal. We show that it is also a braided category by constructing explicitly a commutor. A twist is also defined on $\mathsf{\widetilde{TL}}$. We introduce a module category ${\text{ Mod}_{\mathsf{\widetilde{TL}}}}$ whose objects are functors from $\mathsf{\widetilde{TL}}$ to $\mathsf{Vect}_{\mathbb C}$ and define on it a fusion bifunctor extending the one introduced by Read and Saleur (2007). We use the natural morphisms constructed for $\mathsf{\widetilde{TL}}$ to induce the structure of a ribbon category on ${\text{ Mod}_{\mathsf{\widetilde{TL}}}}(\beta=-q-q^{-1})$, when $q$ is not a root of unity. We discuss how the braiding on $\mathsf{\widetilde{TL}}$ and integrability of statistical models are related. The extension of these structures to the family of dilute Temperley-Lieb algebras is also discussed.
Cited by 1
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 Jonathan Belletête,
- 2 Yvan Saint-Aubin
- 1 Université Paris-Saclay / University of Paris-Saclay
- 2 Université de Montréal / University of Montreal
- Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (through Organization: Conseil de Recherches en Sciences Naturelles et en Génie / Natural Sciences and Engineering Research Council [NSERC / CRSNG])
- European Research Council [ERC]
- Fonds de Recherche du Québec - Nature et Technologies (through Organization: Fonds de Recherche du Québec – Nature et technologies [FRQNT])