SciPost Phys. 18, 158 (2025) ·
published 15 May 2025
|
· pdf
We consider the set of solutions to $M$ random polynomial equations whose $N$ variables are restricted to the $(N-1)$-sphere. Each equation has independent Gaussian coefficients and a target value $V_0$. When solutions exist, they form a manifold. We compute the average Euler characteristic of this manifold in the limit of large $N$, and find different behavior depending on the target value $V_0$, the ratio $\alpha=M/N$, and the variances of the coefficients. We divide this behavior into five phases with different implications for the topology of the solution manifold. When $M=1$ there is a correspondence between this problem and level sets of the energy in the spherical spin glasses. We conjecture that the transition energy dividing two of the topological phases corresponds to the energy asymptotically reached by gradient descent from a random initial condition, possibly resolving an open problem in out-of-equilibrium dynamics. However, the quality of the available data leaves the question open for now.
SciPost Phys. 16, 001 (2024) ·
published 4 January 2024
|
· pdf
The mixed spherical models were recently found to violate long-held assumptions about mean-field glassy dynamics. In particular, the threshold energy, where most stationary points are marginal and that in the simpler pure models attracts long-time dynamics, seems to lose significance. Here, we compute the typical distribution of stationary points relative to each other in mixed models with a replica symmetric complexity. We examine the stability of nearby points, accounting for the presence of an isolated eigenvalue in their spectrum due to their proximity. Despite finding rich structure not present in the pure models, we find nothing that distinguishes the points that do attract the dynamics. Instead, we find new geometric significance of the old threshold energy, and invalidate pictures of the arrangement of most marginal inherent states into a continuous manifold.
Prof. Kent-Dobias: "Since the weaknesses and the r..."
in Submissions | report on On the topology of solutions to random continuous constraint satisfaction problems