Holger Frahm, Andreas Klümper, Dennis Wagner, Xin Zhang
SciPost Phys. 20, 012 (2026) ·
published 19 January 2026
|
· pdf
The XXX spin-$\frac{1}{2}$ Heisenberg chain with non-diagonal boundary fields represents a cornerstone model in the study of integrable systems with open boundaries. Despite its significance, solving this model exactly has remained a formidable challenge due to the breaking of $U(1)$ symmetry. Building on the off-diagonal Bethe Ansatz (ODBA), we derive a set of nonlinear integral equations (NLIEs) that encapsulate the exact spectrum of the model. For $U(1)$ symmetric spin-$\frac{1}{2}$ chains such NLIEs involve two functions $a(x)$ and $\bar{a}(x)$ coupled by an integration kernel with short-ranged elements. The solution functions show characteristic features for arguments at some length scale which grows logarithmically with system size $N$. In the case considered here the $U(1)$ symmetry is broken by the non-diagonal boundary fields and the equations involve a novel third function $c(x)$, which captures the inhomogeneous contributions to the $T$-$Q$ relation in the ODBA. The kernel elements coupling this function to the standard ones are long-ranged and lead for the ground-state to a winding phenomenon. In $\log(1+a(x))$ and $\log(1+\bar a(x))$ we observe a steep change by $2\pi$i at a characteristic scale $x_1$ of the argument. Other features appear at a value $x_0$ which is of order $\log N$. These two length scales, $x_1$ and $x_0$, are independent: their ratio $x_1/x_0$ is large for small $N$ and small for large $N$. Explicit solutions to the NLIEs are obtained numerically for these limiting cases, though intermediate cases ($x_1/x_0 \sim 1$) present computational challenges. This work lays the foundation for studying finite-size corrections and conformal properties of other integrable spin chains with non-diagonal boundaries, opening new avenues for exploring boundary effects in quantum integrable systems.
SciPost Phys. 16, 149 (2024) ·
published 5 June 2024
|
· pdf
We study the scaling limit of a statistical system, which is a special case of the integrable inhomogeneous six-vertex model. It possesses $U_q\big(\mathfrak{sl}(2)\big)$ invariance due to the choice of open boundary conditions imposed. An interesting feature of the lattice theory is that the spectrum of scaling dimensions contains a continuous component. By applying the ODE/IQFT correspondence and the method of the Baxter $Q$ operator the corresponding density of states is obtained. In addition, the partition function appearing in the scaling limit of the lattice model is computed, which may be of interest for the study of nonrational CFTs in the presence of boundaries. As a side result of the research, a simple formula for the matrix elements of the $Q$ operator for the general, integrable, inhomogeneous six-vertex model was discovered, that has not yet appeared in the literature. It is valid for a certain one parameter family of diagonal open boundary conditions in the sector with the $z$-projection of the total spin operator being equal to zero.
SciPost Phys. 11, 057 (2021) ·
published 14 September 2021
|
· pdf
Using the properties of the local Boltzmann weights of integrable interaction-round-a-face (IRF or face) models we express local operators in terms of generalized transfer matrices. This allows for the derivation of discrete functional equations for the reduced density matrices in inhomogeneous generalizations of these models. We apply these equations to study the density matrices for IRF models of various solid-on-solid type and quantum chains of non-Abelian ${SU(2)_3}$ or Fibonacci anyons. Similar as in the six vertex model we find that reduced density matrices for a sequence of consecutive sites can be 'factorized', i.e.\ expressed in terms of nearest-neighbour correlators with coefficients which are independent of the model parameters. Explicit expressions are provided for correlation functions on up to three neighbouring sites.