SciPost Phys. 18, 209 (2025) ·
published 27 June 2025
|
· pdf
Traditional topological materials belong to different Altland-Zirnbauer symmetry classes (AZSCs) depending on their non-spatial symmetries. Here we introduce the notion of hybrid symmetry class topological insulators (HSCTIs): A fusion of two different AZSC topological insulators (TIs) such that they occupy orthogonal Cartesian hyperplanes and their universal massive Dirac Hamiltonian mutually anticommute, a mathematical procedure we name hybridization. The boundaries of HSCTIs can also harbor TIs, typically affiliated with an AZSC that is different from the ones for the parent two TIs. As such, a fusion or hybridization between planar class AII quantum spin Hall and vertical class BDI Su-Schrieffer-Heeger insulators gives birth to a three-dimensional class A HSCTI, accommodating quantum anomalous Hall insulators (class A) of opposite Chern numbers and quantized Hall conductivity of opposite signs on the top and bottom surfaces. Such a response is shown to be stable against weak disorder. We extend this construction to encompass crystalline HSCTI and topological superconductors (featuring half-quantized thermal Hall conductivity of opposite sings on the top and bottom surfaces), and beyond three spatial dimensions. Non-trivial responses of three-dimensional HSCTIs to crystal defects (namely edge dislocations) in terms of mid-gap bound states at zero energy around its core only on the top and bottom surfaces are presented. Possible (meta)material platforms to harness and engineer HSCTIs are discussed.
SciPost Phys. 18, 073 (2025) ·
published 27 February 2025
|
· pdf
The energy spectra of linearly dispersing gapless spin-3/2 Dirac fermions display birefringence, featuring two effective Fermi velocities, thus breaking the space-time Lorentz symmetry. Here, we consider a non-Hermitian (NH) generalization of this scenario by introducing a masslike anti-Hermitian birefringent Dirac operator to its Hermitian counterpart. The resulting NH operator shows real eigenvalue spectra over an extended NH parameter regime, and a combination of non-spatial and discrete rotational symmetries protects the gapless nature of such quasiparticles. However, at the brink of dynamic mass generation, triggered by Hubbardlike local interactions, the birefringent parameter always vanishes under coarse grain due to the Yukawa-type interactions with scalar bosonic order-parameter fluctuations. The resulting quantum critical state is, therefore, described by two decoupled copies of spin-1/2 Dirac fermions with a unique terminal Fermi velocity, which is equal to the bosonic order-parameter velocity, thereby fostering an emergent space-time Lorentz symmetry. Furthermore, depending on the internal algebra between the anti-Hermitian birefringent Dirac operator and the candidate mass order, the system achieves the emergent Yukawa-Lorentz symmetry either by maintaining its non-Hermiticity or by recovering a full Hermiticity. We discuss the resulting quantum critical phenomena and possible microscopic realizations of the proposed scenarios.
Submissions
Submissions for which this Contributor is identified as an author:
Dr Roy: "We thank the referee for the r..."
in Submissions | report on Hybrid symmetry class topological insulators