SciPost Phys. Core 5, 020 (2022) ·
published 12 April 2022

· pdf
We study the entanglement contour and partial entanglement entropy (PEE) in quantum field theories in 3 and higher dimensions. The entanglement entropy is evaluated from a certain limit of the PEE with a geometric regulator. In the context of the entanglement contour, we classify the geometric regulators, study their difference from the UV regulators. Furthermore, for spherical regions in conformal field theories (CFTs) we find the exact relation between the UV and geometric cutoff, which clarifies some subtle points in the previous literature. We clarify a subtle point of the additive linear combination (ALC) proposal for PEE in higher dimensions. The subset entanglement entropies in the ALC proposal should all be evaluated as a limit of the PEE while excluding a fixed class of localshortdistance correlation. Unlike the 2dimensional configurations, naively plugging the entanglement entropy calculated with a UV cutoff will spoil the validity of the ALC proposal. We derive the entanglement contour function for spherical regions, annuli and spherical shells in the vacuum state of generaldimensional CFTs on a hyperplane.
SciPost Phys. 11, 058 (2021) ·
published 14 September 2021

· pdf
Entanglement entropy satisfies a first lawlike relation, which equates the first order perturbation of the entanglement entropy for the region $A$ to the first order perturbation of the expectation value of the modular Hamiltonian, $\delta S_{A}=\delta \langle K_A \rangle$. We propose that this relation has a finer version which states that, the first order perturbation of the entanglement contour equals to the first order perturbation of the contour of the modular Hamiltonian, i.e. $\delta s_{A}(\textbf{x})=\delta \langle k_{A}(\textbf{x})\rangle$. Here the contour functions $s_{A}(\textbf{x})$ and $k_{A}(\textbf{x})$ capture the contribution from the degrees of freedom at $\textbf{x}$ to $S_{A}$ and $K_A$ respectively. In some simple cases $k_{A}(\textbf{x})$ is determined by the stress tensor. We also evaluate the quantum correction to the entanglement contour using the fine structure of the entanglement wedge and the additive linear combination (ALC) proposal for partial entanglement entropy (PEE) respectively. The fine structure picture shows that, the quantum correction to the boundary PEE can be identified as a bulk PEE of certain bulk region. While the \textit{ALC proposal} shows that the quantum correction to the boundary PEE comes from the linear combination of bulk entanglement entropy. We focus on holographic theories with local modular Hamiltonian and configurations of quantum field theories where the \textit{ALC proposal} applies.