Axel Cortés Cubero, Robert M. Konik, Máté Lencsés, Giuseppe Mussardo, Gabor Takács
SciPost Phys. 12, 162 (2022) ·
published 16 May 2022

· pdf
The thermal deformation of the critical point action of the 2D tricritical Ising model gives rise to an exact scattering theory with seven massive excitations based on the exceptional $E_7$ Lie algebra. The high and low temperature phases of this model are related by duality. This duality guarantees that the leading and subleading magnetisation operators, $\sigma(x)$ and $\sigma'(x)$, in either phase are accompanied by associated disorder operators, $\mu(x)$ and $\mu'(x)$. Working specifically in the high temperature phase, we write down the sets of bootstrap equations for these four operators. For $\sigma(x)$ and $\sigma'(x)$, the equations are identical in form and are parameterised by the values of the oneparticle form factors of the two lightest $\mathbb{Z}_2$ odd particles. Similarly, the equations for $\mu(x)$ and $\mu'(x)$ have identical form and are parameterised by two elementary form factors. Using the clustering property, we show that these four sets of solutions are eventually not independent; instead, the parameters of the solutions for $\sigma(x)/\sigma'(x)$ are fixed in terms of those for $\mu(x)/\mu'(x)$. We use the truncated conformal space approach to confirm numerically the derived expressions of the matrix elements as well as the validity of the $\Delta$sum rule as applied to the offcritical correlators. We employ the derived form factors of the order and disorder operators to compute the exact dynamical structure factors of the theory, a set of quantities with a rich spectroscopy which may be directly tested in future inelastic neutron or Raman scattering experiments.
SciPost Phys. 9, 011 (2020) ·
published 22 July 2020

· pdf
This work considers entropy generation and relaxation in quantum quenches in the Ising and $3$state Potts spin chains. In the absence of explicit symmetry breaking we find universal ratios involving R\'enyi entropy growth rates and magnetisation relaxation for small quenches. We also demonstrate that the magnetisation relaxation rate provides an observable signature for the "dynamical Gibbs effect" which is a recently discovered characteristic nonmonotonous behaviour of entropy growth linked to changes in the quasiparticle spectrum.