SciPost Phys. 16, 033 (2024) ·
published 26 January 2024

· pdf
Utilizing the framework of $\mathbb{Z}_2$ lattice gauge theories in the context of Pauli stabilizer codes, we present methodologies for simulating fermions via qubit systems on a twodimensional square lattice. We investigate the symplectic automorphisms of the Pauli module over the Laurent polynomial ring. This enables us to systematically increase the code distances of stabilizer codes while fixing the rate between encoded logical fermions and physical qubits. We identify a family of stabilizer codes suitable for fermion simulation, achieving code distances of d=2,3,4,5,6,7, allowing correction of any $\lfloor \frac{d1}{2} \rfloor$qubit error. In contrast to the traditional code concatenation approach, our method can increase the code distances without decreasing the (fermionic) code rate. In particular, we explicitly show all stabilizers and logical operators for codes with code distances of d=3,4,5. We provide syndromes for all Pauli errors and invent a syndromematching algorithm to compute code distances numerically.
SciPost Phys. 14, 089 (2023) ·
published 2 May 2023

· pdf
We construct infinitely many new exactly solvable local commuting projector lattice Hamiltonian models for general bosonic beyond group cohomology invertible topological phases of order two and four in any spacetime dimensions, whose boundaries are characterized by gravitational anomalies. Examples include the beyond group cohomology invertible phase without symmetry in (4+1)D that has an anomalous boundary $\mathbb{Z}_2$ topological order with fermionic particle and fermionic loop excitations that have mutual $\pi$ statistics. We argue that this construction gives a new nontrivial quantum cellular automaton (QCA) in (4+1)D of order two. We also present an explicit construction of gapped symmetric boundary state for the bosonic beyond group cohomology invertible phase with unitary $\mathbb{Z}_2$ symmetry in (4+1)D. We discuss new quantum phase transitions protected by different invertible phases across the transitions.
SciPost Phys. 14, 065 (2023) ·
published 11 April 2023

· pdf
(3+1)D topological phases of matter can host a broad class of nontrivial topological defects of codimension1, 2, and 3, of which the wellknown point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible faulttolerant logical operations in topological quantum errorcorrecting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of $\mathbb{Z}_2$ gauge theory with fermionic charges, in $\mathbb{Z}_2 \times \mathbb{Z}_2$ gauge theory with bosonic charges, and also in nonAbelian discrete gauge theories based on dihedral ($D_n$) and alternating ($A_6$) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an $H^4$ cohomology class that characterizes part of an underlying 3group symmetry of the topological order. The equations involving background gauge fields for the 3group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with nonAbelian flux loops (defining part of a noninvertible higher symmetry), examples of noninvertible codimension2 defects, and examples of the interplay of codimension2 defects with codimension1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D $A_6$ gauge theory.
Submissions
Submissions for which this Contributor is identified as an author:
Dr Chen: "We are grateful for the refere..."
in Submissions  report on Errorcorrecting codes for fermionic quantum simulation