SciPost logo

SciPost Submission Page

Solitonic symmetry as non-invertible symmetry: cohomology theories with TQFT coefficients

by Shi Chen, Yuya Tanizaki

Submission summary

Authors (as registered SciPost users): Shi Chen
Submission information
Preprint Link: https://arxiv.org/abs/2307.00939v2  (pdf)
Date submitted: 2024-04-19 03:43
Submitted by: Chen, Shi
Submitted to: SciPost Physics
Ontological classification
Academic field: Physics
Specialties:
  • Condensed Matter Physics - Theory
  • High-Energy Physics - Theory
  • Mathematical Physics
Approach: Theoretical

Abstract

Originating from the topology of the path-integral target space $Y$, solitonic symmetry describes the conservation law of topological solitons and the selection rule of defect operators. As Ref.~\cite{Chen:2022cyw} exemplifies, the conventional treatment of solitonic symmetry as an invertible symmetry based on homotopy groups is inappropriate. In this paper, we develop a systematic framework to treat solitonic symmetries as non-invertible generalized symmetries. We propose that the non-invertible solitonic symmetries are generated by the partition functions of auxiliary topological quantum field theories (TQFTs) coupled with the target space $Y$. We then understand solitonic symmetries as non-invertible cohomology theories on $Y$ with TQFT coefficients. This perspective enables us to identify the invertible solitonic subsymmetries and also clarifies the topological origin of the non-invertibility in solitonic symmetry. We finally discuss how solitonic symmetry relies on and goes beyond the conventional wisdom of homotopy groups. This paper is aimed at a tentative general framework for solitonic symmetry, serving as a starting point for future developments.

Author indications on fulfilling journal expectations

  • Provide a novel and synergetic link between different research areas.
  • Open a new pathway in an existing or a new research direction, with clear potential for multi-pronged follow-up work
  • Detail a groundbreaking theoretical/experimental/computational discovery
  • Present a breakthrough on a previously-identified and long-standing research stumbling block
Current status:
In refereeing

Login to report or comment