SciPost Phys. 18, 135 (2025) ·
published 24 April 2025
|
· pdf
Quantum circuits make it possible to simulate the continuous-time dynamics of a many-body Hamiltonian by implementing discrete Trotter steps of duration $\tau$. However, when $\tau$ is sufficiently large, the discrete dynamics exhibit qualitative differences compared to the original evolution, potentially displaying novel features and many-body effects. We study an interesting example of this phenomenon, by considering the integrable Trotterization of a prototypical integrable model, the XXZ Heisenberg spin chain. We focus on the well-known bipartition protocol, where two halves of a large system are prepared in different macrostates and suddenly joined together, yielding non-trivial nonequilibrium dynamics. Building upon recent results and adapting the generalized hydrodynamics (GHD) of integrable models, we develop an exact large-scale description of an explicit one-dimensional quantum-circuit setting, where the input left and right qubits are initialized in two distinct product states. We explore the phenomenology predicted by the GHD equations, which depend on the Trotter step and the gate parameters. In some phases of the parameter space, we show that the quantum-circuit large-scale dynamics is qualitatively different compared to the continuous-time evolution. In particular, we find that a single microscopic defect at the junction, such as the addition of a single qubit, may change the nonequilibrium macrostate appearing at late time.
SciPost Phys. 6, 062 (2019) ·
published 27 May 2019
|
· pdf
We consider integrable Matrix Product States (MPS) in integrable spin chains and show that they correspond to "operator valued" solutions of the so-called twisted Boundary Yang-Baxter (or reflection) equation. We argue that the integrability condition is equivalent to a new linear intertwiner relation, which we call the "square root relation", because it involves half of the steps of the reflection equation. It is then shown that the square root relation leads to the full Boundary Yang-Baxter equations. We provide explicit solutions in a number of cases characterized by special symmetries. These correspond to the "symmetric pairs" $(SU(N),SO(N))$ and $(SO(N),SO(D)\otimes SO(N-D))$, where in each pair the first and second elements are the symmetry groups of the spin chain and the integrable state, respectively. These solutions can be considered as explicit representations of the corresponding twisted Yangians, that are new in a number of cases. Examples include certain concrete MPS relevant for the computation of one-point functions in defect AdS/CFT.
Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler
SciPost Phys. 1, 001 (2016) ·
published 14 September 2016
|
· pdf
We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.
Prof. Piroli: "To understand the approach to ..."
in Submissions | report on Quantum quenches to the attractive one-dimensional Bose gas: exact results