SciPost Phys. 19, 155 (2025) ·
published 16 December 2025
|
· pdf
The ATLAS experiment at the Large Hadron Collider explores the use of modern neural networks for a multi-dimensional calibration of its calorimeter signal defined by clusters of topologically connected cells (topo-clusters). The Bayesian neural network (BNN) approach not only yields a continuous and smooth calibration function that improves performance relative to the standard calibration but also provides uncertainties on the calibrated energies for each topo-cluster. The results obtained by using a trained BNN are compared to the standard local hadronic calibration and to a calibration provided by training a deep neural network. The uncertainties predicted by the BNN are interpreted in the context of a fractional contribution to the systematic uncertainties of the trained calibration. They are also compared to uncertainty predictions obtained from an alternative estimator employing repulsive ensembles.
Camila Pazos, Shuchin Aeron, Pierre-Hugues Beauchemin, Vincent Croft, Zhengyan Huan, Martin Klassen, Taritree Wongjirad
SciPost Phys. Core 8, 064 (2025) ·
published 2 October 2025
|
· pdf
Correcting for detector effects in experimental data, particularly through unfolding, is critical for enabling precision measurements in high-energy physics. However, traditional unfolding methods face challenges in scalability, flexibility, and dependence on simulations. We introduce a novel approach to multidimensional object-wise unfolding using conditional Denoising Diffusion Probabilistic Models (cDDPM). Our method utilizes the cDDPM for a non-iterative, flexible posterior sampling approach, incorporating distribution moments as conditioning information, which exhibits a strong inductive bias that allows it to generalize to unseen physics processes without explicitly assuming the underlying distribution. Our results highlight the potential of this method as a step towards a "universal" unfolding tool that reduces dependence on truth-level assumptions, while enabling the unfolding of a wide range of measured distributions with improved adaptability and accuracy.
Ms Pazos: "Thank you for the comments and..."
in Submissions | report on Towards Universal Unfolding of Detector Effects in High-Energy Physics using Denoising Diffusion Probabilistic Models