SciPost Phys. Core 8, 058 (2025) ·
published 28 August 2025
|
· pdf
We consider two-dimensional continuum fluids with odd viscosity under a chiral body force. The chiral body force makes the low-energy excitation spectrum of the fluids gapped, and the odd viscosity allows us to introduce the first Chern number of each energy band in the fluids. Employing a mapping between hydrodynamic variables and U(1) gauge field strengths, we derive a U(1) gauge theory for topologically nontrivial waves. The resulting U(1) gauge theory is given by the Maxwell-Chern-Simons theory with an additional term associated with odd viscosity. We then explicitly solve the equations of motion for the gauge fields in the presence of the boundary and find edge mode solutions. We finally confirm the bulk-boundary correspondence in the context of continuum systems.
SciPost Phys. 12, 160 (2022) ·
published 13 May 2022
|
· pdf
We investigate macroscopic behaviors of fluctuating domain walls in nonequilibrium open systems with the help of the effective field theory based on symmetry. Since the domain wall in open systems breaks the translational symmetry, there appears a gapless excitation identified as the Nambu-Goldstone (NG) mode, which shows the non-propagating diffusive behavior in contrast to those in closed systems. After demonstrating the presence of the diffusive NG mode in the $(2+1)$-dimensional dissipative Josephson junction, we provide a symmetry-based general analysis for open systems breaking the one-dimensional translational symmetry. A general effective Lagrangian is constructed based on the Schwinger-Keldysh formalism, which supports the presence of the gapless diffusion mode in the fluctuation spectrum in the thin wall regime. Besides, we also identify a term peculiar to the open system, which possibly leads to the instability in the thick-wall regime or the nonlinear Kardar-Parisi-Zhang coupling in the thin-wall regime although it is absent in the Josephson junction.
Dr Fujii: "------------------------------..."
in Submissions | report on Effective field theory of fluctuating wall in open systems: from a kink in Josephson junction to general domain wall